Multi-sensor data fusion using the influence model

Wen Dong, A. Pentland
{"title":"Multi-sensor data fusion using the influence model","authors":"Wen Dong, A. Pentland","doi":"10.1109/BSN.2006.41","DOIUrl":null,"url":null,"abstract":"System robustness against individual sensor failures is an important concern in multi-sensor networks. Unfortunately, the complexity of using the remaining sensors to interpolate missing sensor data grows exponentially due to the \"curse of dimensionality\". In this paper, we demonstrate that the influence model, our novel formulation for combining evidence from multiple interactive dynamic processes, can efficiently interpolate missing data and can achieve greater accuracy by modeling the structure of multi-sensor interaction","PeriodicalId":246227,"journal":{"name":"International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2006.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

System robustness against individual sensor failures is an important concern in multi-sensor networks. Unfortunately, the complexity of using the remaining sensors to interpolate missing sensor data grows exponentially due to the "curse of dimensionality". In this paper, we demonstrate that the influence model, our novel formulation for combining evidence from multiple interactive dynamic processes, can efficiently interpolate missing data and can achieve greater accuracy by modeling the structure of multi-sensor interaction
基于影响模型的多传感器数据融合
在多传感器网络中,系统对单个传感器故障的鲁棒性是一个重要问题。不幸的是,由于“维数诅咒”,使用剩余的传感器来插值缺失的传感器数据的复杂性呈指数级增长。在本文中,我们证明了影响模型,我们的新公式结合了多个交互动态过程的证据,可以有效地插值缺失的数据,并且可以通过建模多传感器交互的结构来获得更高的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信