Analysis of electric vehicle stability effectiveness on wheel force with BLDC motor drive

R. Behera, Rustam Kumar, Srirama Murthy Bellala, P. Raviteja
{"title":"Analysis of electric vehicle stability effectiveness on wheel force with BLDC motor drive","authors":"R. Behera, Rustam Kumar, Srirama Murthy Bellala, P. Raviteja","doi":"10.1109/IESES.2018.8349873","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to develop effective control strategies to improve driving dynamics and slope of the road based on the mechanical dynamic study. The proposed control strategy stabilizes the wheels forces through control of brushless DC motor drive (BLDC). For stabilizing the 3 wheeler and structural advantages that BLDC motors are connected directly to the tires. The proposed system is studied analytically and a laboratory prototype is built to verify the effectiveness of the proposed control system. Few typical simulation and experimental results are presented.","PeriodicalId":146951,"journal":{"name":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES.2018.8349873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The focus of this paper is to develop effective control strategies to improve driving dynamics and slope of the road based on the mechanical dynamic study. The proposed control strategy stabilizes the wheels forces through control of brushless DC motor drive (BLDC). For stabilizing the 3 wheeler and structural advantages that BLDC motors are connected directly to the tires. The proposed system is studied analytically and a laboratory prototype is built to verify the effectiveness of the proposed control system. Few typical simulation and experimental results are presented.
无刷直流电机驱动下电动汽车轮力稳定性效果分析
本文的重点是在机械动力学研究的基础上制定有效的控制策略,以改善驾驶动力学和道路坡度。该控制策略通过控制无刷直流电机驱动(BLDC)来稳定车轮力。无刷直流电机直接连接在轮胎上,具有稳定三轮的结构优势。对所提出的控制系统进行了分析研究,并建立了实验室样机来验证所提出控制系统的有效性。给出了一些典型的仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信