Symbolic-numeric algorithms for computing validated results

L. Zhi
{"title":"Symbolic-numeric algorithms for computing validated results","authors":"L. Zhi","doi":"10.1145/2608628.2627491","DOIUrl":null,"url":null,"abstract":"In the tutorial, we will introduce two kinds of problems for which validated results are computed via hybrid symbolic-numeric algorithms. These hybrid algorithms follow the basic principle pointed out by Siegfried M. Rump in [1] for computing validated results: First, a pure floating point algorithm is used to compute an approximate solution of good quality for a given problem. Second, a verification step using exact rational arithmetic or interval arithmetic is appended. If this step is successful, then certified lower bounds or verified error bounds are computed for the previously computed approximation.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2627491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the tutorial, we will introduce two kinds of problems for which validated results are computed via hybrid symbolic-numeric algorithms. These hybrid algorithms follow the basic principle pointed out by Siegfried M. Rump in [1] for computing validated results: First, a pure floating point algorithm is used to compute an approximate solution of good quality for a given problem. Second, a verification step using exact rational arithmetic or interval arithmetic is appended. If this step is successful, then certified lower bounds or verified error bounds are computed for the previously computed approximation.
用于计算验证结果的符号-数值算法
在本教程中,我们将介绍两种通过混合符号-数值算法计算验证结果的问题。这些混合算法遵循Siegfried M. Rump在[1]中指出的计算验证结果的基本原则:首先,使用纯浮点算法计算给定问题的高质量近似解。其次,使用精确有理数运算或区间运算进行验证。如果此步骤成功,则为先前计算的近似值计算经过验证的下界或经过验证的错误边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信