{"title":"Spin Structure with JLab 6 and 12 GeV","authors":"Jian-ping Chen","doi":"10.2172/1994380","DOIUrl":null,"url":null,"abstract":"Highlights of JLab 6 GeV results on spin structure study and plan for 12 GeV program. Spin structure study is full of surprises and puzzles. A decade of experiments from JLab yield these exciting results: (1) valence spin structure; (2) precision measurements of g{sub 2}/d{sub 2} - high-twist; (3) spin sum rules and polarizabilities; and (4) first neutron transversity. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; (2) Precision measurements of g{sub 2}/d{sub 2}; and (3) Precision extraction of transversity/tensor charge.","PeriodicalId":102560,"journal":{"name":"4th Hadron Workshop / KITPC Program, Beijing, China, July, 2012","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th Hadron Workshop / KITPC Program, Beijing, China, July, 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1994380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights of JLab 6 GeV results on spin structure study and plan for 12 GeV program. Spin structure study is full of surprises and puzzles. A decade of experiments from JLab yield these exciting results: (1) valence spin structure; (2) precision measurements of g{sub 2}/d{sub 2} - high-twist; (3) spin sum rules and polarizabilities; and (4) first neutron transversity. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; (2) Precision measurements of g{sub 2}/d{sub 2}; and (3) Precision extraction of transversity/tensor charge.