Error analysis and precision estimation for floating-point dot-products using affine arithmetic

T. Huynh, M. Mucke
{"title":"Error analysis and precision estimation for floating-point dot-products using affine arithmetic","authors":"T. Huynh, M. Mucke","doi":"10.1109/ATC.2011.6027495","DOIUrl":null,"url":null,"abstract":"One challenging task for VLSI and reconfigurable system design is the identification of the smallest number format possible to implement a given numerical algorithm guaranteeing some final accuracy while minimising area used, execution time and power. We apply affine arithmetic, an extension to interval arithmetic, to estimate the rounding error of different floating-point dot-product variants. The validity of the estimated error bounds is demonstrated using extensive simulations. We derive the analytical models for rounding errors over a wide range of parameters and show that affine arithmetic with a probabilistic bounding operator is able to provide a tighter bound compared to conventional forward error analysis. Due to the tight bounds, minimum mantissa bit width for hardware implementation can be determined and comparison of different dot-product variants is possible. Our presented models allow for an efficient design space exploration and are key to specialised code generators.","PeriodicalId":221905,"journal":{"name":"The 2011 International Conference on Advanced Technologies for Communications (ATC 2011)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Conference on Advanced Technologies for Communications (ATC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2011.6027495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One challenging task for VLSI and reconfigurable system design is the identification of the smallest number format possible to implement a given numerical algorithm guaranteeing some final accuracy while minimising area used, execution time and power. We apply affine arithmetic, an extension to interval arithmetic, to estimate the rounding error of different floating-point dot-product variants. The validity of the estimated error bounds is demonstrated using extensive simulations. We derive the analytical models for rounding errors over a wide range of parameters and show that affine arithmetic with a probabilistic bounding operator is able to provide a tighter bound compared to conventional forward error analysis. Due to the tight bounds, minimum mantissa bit width for hardware implementation can be determined and comparison of different dot-product variants is possible. Our presented models allow for an efficient design space exploration and are key to specialised code generators.
基于仿射算法的浮点点积误差分析与精度估计
VLSI和可重构系统设计的一个具有挑战性的任务是确定最小的数字格式,以实现给定的数值算法,在保证最终精度的同时最小化所使用的面积、执行时间和功耗。应用区间算法的扩展仿射算法估计不同浮点点积变量的舍入误差。通过大量的仿真验证了估计误差范围的有效性。我们推导了在广泛参数范围内舍入误差的分析模型,并表明与传统的前向误差分析相比,带有概率边界算子的仿射算法能够提供更严格的边界。由于边界很紧,可以确定硬件实现的最小尾数位宽度,并且可以比较不同的点积变体。我们提出的模型允许有效的设计空间探索,是专门的代码生成器的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信