{"title":"Reductions that lie","authors":"L. Adleman, Kenneth L. Manders","doi":"10.1109/SFCS.1979.35","DOIUrl":null,"url":null,"abstract":"All of the reductions currently used in complexity theory (≤p, ≤γ, ≤R) have the property that they are honest. If A ≤ B then whatever machine M reduces A to B is such that: if on input x, M outputs y then x ε A ↔ y ε B. It would appear that this membership preserving property is intrinsic to the notion of reduction. We will see that it is not. We introduce reductions that lie and sometimes produce outputs y ε B when x ? A. We will use these reductions to further clarify the computational complexity of some problems raised by Gauss.","PeriodicalId":311166,"journal":{"name":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1979.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
All of the reductions currently used in complexity theory (≤p, ≤γ, ≤R) have the property that they are honest. If A ≤ B then whatever machine M reduces A to B is such that: if on input x, M outputs y then x ε A ↔ y ε B. It would appear that this membership preserving property is intrinsic to the notion of reduction. We will see that it is not. We introduce reductions that lie and sometimes produce outputs y ε B when x ? A. We will use these reductions to further clarify the computational complexity of some problems raised by Gauss.