Research on Data Augmentation Strategy Methods for Image Caption

Nan Lin, Shuang Li, Yingkang Han, Mengdi Liu
{"title":"Research on Data Augmentation Strategy Methods for Image Caption","authors":"Nan Lin, Shuang Li, Yingkang Han, Mengdi Liu","doi":"10.1145/3573428.3573673","DOIUrl":null,"url":null,"abstract":"Data augmentation can effectively expand the number of samples in a dataset and increase the diversity of samples. Image caption refers to the generation of a description statement corresponding to an image, and its accuracy directly affects the accuracy of the description statement. In this paper, we study and analyze data augmentation and VizWiz dataset, then we find that data augmentation can effectively simulate the image quality problems existing in VizWiz dataset. In order to improve the accuracy of the image caption model on the VizWiz dataset, this paper presents a method based on a data augmentation strategy, which mainly uses four data augmentation operators to simulate camera shake, out-of-focus, flash and low light conditions. The strategy space also contains basic translate, shear and contrast operations for the image. The method achieves a score: BLEU_1 of 62.5, BLEU_4 of 23.1, ROUGE_L of 46.6 and CIDEr of 49.6 on the VizWiz dataset.","PeriodicalId":314698,"journal":{"name":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573428.3573673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentation can effectively expand the number of samples in a dataset and increase the diversity of samples. Image caption refers to the generation of a description statement corresponding to an image, and its accuracy directly affects the accuracy of the description statement. In this paper, we study and analyze data augmentation and VizWiz dataset, then we find that data augmentation can effectively simulate the image quality problems existing in VizWiz dataset. In order to improve the accuracy of the image caption model on the VizWiz dataset, this paper presents a method based on a data augmentation strategy, which mainly uses four data augmentation operators to simulate camera shake, out-of-focus, flash and low light conditions. The strategy space also contains basic translate, shear and contrast operations for the image. The method achieves a score: BLEU_1 of 62.5, BLEU_4 of 23.1, ROUGE_L of 46.6 and CIDEr of 49.6 on the VizWiz dataset.
图像标题数据增强策略方法研究
数据增强可以有效地扩展数据集中的样本数量,增加样本的多样性。图像说明是指生成与图像对应的描述语句,其准确性直接影响到描述语句的准确性。本文对数据增强和VizWiz数据集进行了研究和分析,发现数据增强可以有效地模拟VizWiz数据集中存在的图像质量问题。为了提高VizWiz数据集上图像标题模型的准确性,本文提出了一种基于数据增强策略的方法,该方法主要使用四种数据增强算子模拟相机抖动、失焦、闪光和弱光情况。策略空间还包含图像的基本平移、剪切和对比操作。该方法在VizWiz数据集上的得分为:BLEU_1为62.5,BLEU_4为23.1,ROUGE_L为46.6,CIDEr为49.6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信