Dynamic recurrent neural networks for modeling flexible robot dynamics

L. Jin, M. Gupta, P. Nikiforuk
{"title":"Dynamic recurrent neural networks for modeling flexible robot dynamics","authors":"L. Jin, M. Gupta, P. Nikiforuk","doi":"10.1109/ISIC.1995.525045","DOIUrl":null,"url":null,"abstract":"The identification of a general class of multi-input and multi-output (MIMO) discrete-time nonlinear systems expressed in the state space form is studied using dynamic recurrent neural network (DRNN) approach. A novel discrete-time DRNN, which is represented by a set of parameterized nonlinear difference equations and has the universal approximation capability, is proposed for modeling unknown discrete-time nonlinear systems. Dynamic backpropagation learning algorithm is discussed extensively in order to carry out the modeling task using the input-output data. A simulation example of modeling flexible robot dynamics is provided to demonstrate the usefulness of the proposed technique.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The identification of a general class of multi-input and multi-output (MIMO) discrete-time nonlinear systems expressed in the state space form is studied using dynamic recurrent neural network (DRNN) approach. A novel discrete-time DRNN, which is represented by a set of parameterized nonlinear difference equations and has the universal approximation capability, is proposed for modeling unknown discrete-time nonlinear systems. Dynamic backpropagation learning algorithm is discussed extensively in order to carry out the modeling task using the input-output data. A simulation example of modeling flexible robot dynamics is provided to demonstrate the usefulness of the proposed technique.
柔性机器人动力学建模的动态递归神经网络
采用动态递归神经网络(DRNN)方法研究了一类以状态空间形式表示的多输入多输出(MIMO)离散非线性系统辨识问题。提出了一种用一组参数化非线性差分方程表示的具有通用逼近能力的离散非线性神经网络,用于对未知离散非线性系统进行建模。为了利用输入输出数据完成建模任务,本文对动态反向传播学习算法进行了广泛的讨论。最后给出了柔性机器人动力学建模的仿真实例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信