Scheduling Hadoop Jobs to Meet Deadlines

Kamal Kc, Kemafor Anyanwu
{"title":"Scheduling Hadoop Jobs to Meet Deadlines","authors":"Kamal Kc, Kemafor Anyanwu","doi":"10.1109/CloudCom.2010.97","DOIUrl":null,"url":null,"abstract":"User constraints such as deadlines are important requirements that are not considered by existing cloud-based data processing environments such as Hadoop. In the current implementation, jobs are scheduled in FIFO order by default with options for other priority based schedulers. In this paper, we extend real time cluster scheduling approach to account for the two-phase computation style of MapReduce. We develop criteria for scheduling jobs based on user specified deadline constraints and discuss our implementation and preliminary evaluation of a Deadline Constraint Scheduler for Hadoop which ensures that only jobs whose deadlines can be met are scheduled for execution.","PeriodicalId":130987,"journal":{"name":"2010 IEEE Second International Conference on Cloud Computing Technology and Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"273","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Second International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2010.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 273

Abstract

User constraints such as deadlines are important requirements that are not considered by existing cloud-based data processing environments such as Hadoop. In the current implementation, jobs are scheduled in FIFO order by default with options for other priority based schedulers. In this paper, we extend real time cluster scheduling approach to account for the two-phase computation style of MapReduce. We develop criteria for scheduling jobs based on user specified deadline constraints and discuss our implementation and preliminary evaluation of a Deadline Constraint Scheduler for Hadoop which ensures that only jobs whose deadlines can be met are scheduled for execution.
调度Hadoop作业以满足最后期限
用户约束(如截止日期)是重要的需求,而现有的基于云的数据处理环境(如Hadoop)没有考虑到这一点。在当前的实现中,作业在默认情况下以FIFO顺序调度,并可选择其他基于优先级的调度程序。在本文中,我们扩展了实时集群调度方法来考虑MapReduce的两阶段计算风格。我们根据用户指定的截止日期约束制定了调度作业的标准,并讨论了我们对Hadoop的截止日期约束调度程序的实现和初步评估,该调度程序确保只有能够满足截止日期的作业才会被调度执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信