{"title":"MMIC Design Techniques for Low-Cost High-Volume Commercial Modules","authors":"J. Hubert","doi":"10.1109/EUMA.2003.341104","DOIUrl":null,"url":null,"abstract":"This paper presents several MMIC design techniques that focus on module cost reduction and general MMIC component requirements relative to point-to-point and point-to-multipoint terrestrial, as well as two-way satellite, low-cost high-volume communication module needs. Currently, MMIC vendors concentrate on improving performance and reducing MMIC cost. Low-cost high-volume modules impose additional requirements relating to MMIC compatibility with module volume production processes. The MMIC design techniques discussed include: circuit compaction, use of external support components, maximizing symmetry, reduction of external connections, compatibility with automatic bonding machines, compatibility with automatic pick-and-place machines, and standardizing RF probe types. General MMIC requirements relative to module needs for both terrestrial and satellite communication links are also discussed.","PeriodicalId":156210,"journal":{"name":"2003 33rd European Microwave Conference, 2003","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 33rd European Microwave Conference, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMA.2003.341104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents several MMIC design techniques that focus on module cost reduction and general MMIC component requirements relative to point-to-point and point-to-multipoint terrestrial, as well as two-way satellite, low-cost high-volume communication module needs. Currently, MMIC vendors concentrate on improving performance and reducing MMIC cost. Low-cost high-volume modules impose additional requirements relating to MMIC compatibility with module volume production processes. The MMIC design techniques discussed include: circuit compaction, use of external support components, maximizing symmetry, reduction of external connections, compatibility with automatic bonding machines, compatibility with automatic pick-and-place machines, and standardizing RF probe types. General MMIC requirements relative to module needs for both terrestrial and satellite communication links are also discussed.