Mining User’s Opinion Towards the Rising and Falling Trends of the Stock Market: A Hybrid Model

Haoda Qian, Liping Chen, Qi-fen Zha
{"title":"Mining User’s Opinion Towards the Rising and Falling Trends of the Stock Market: A Hybrid Model","authors":"Haoda Qian, Liping Chen, Qi-fen Zha","doi":"10.1109/ISI53945.2021.9624687","DOIUrl":null,"url":null,"abstract":"Mining users’ opinions towards the rising and falling trends of the stocks may help the management department estimate the risk and make timely decision. Existing methods ignore the effective fusion of domain information and pre-trained language models, hindering mining implicit semantic information. This paper proposes a hybrid method that adopts masked language modeling to obtain a domain-information-enhanced language model. Firstly, it generates an attention-mechanism-oriented masking based on words’ importance, word-level polarity and terminology. Then, the masked words and their corresponding knowledge are predicted to acquire domain-aware language representation. Experimental results on two public financial sentiment analysis datasets show the efficacy of the proposed model.","PeriodicalId":347770,"journal":{"name":"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI53945.2021.9624687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mining users’ opinions towards the rising and falling trends of the stocks may help the management department estimate the risk and make timely decision. Existing methods ignore the effective fusion of domain information and pre-trained language models, hindering mining implicit semantic information. This paper proposes a hybrid method that adopts masked language modeling to obtain a domain-information-enhanced language model. Firstly, it generates an attention-mechanism-oriented masking based on words’ importance, word-level polarity and terminology. Then, the masked words and their corresponding knowledge are predicted to acquire domain-aware language representation. Experimental results on two public financial sentiment analysis datasets show the efficacy of the proposed model.
挖掘用户对股票市场涨跌趋势的看法:一个混合模型
挖掘用户对股票涨跌趋势的意见,可以帮助管理部门评估风险,及时做出决策。现有方法忽略了领域信息与预训练语言模型的有效融合,阻碍了隐式语义信息的挖掘。本文提出了一种采用屏蔽语言建模的混合方法来获得增强领域信息的语言模型。首先,它根据单词的重要性、词级极性和术语产生一个注意机制导向的掩蔽。然后,对被屏蔽词及其对应的知识进行预测,获得领域感知语言表示。在两个公共金融情绪分析数据集上的实验结果表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信