Traveling Wave Based Method for Protecting Power Distribution Systems with Distributed Generations

Wen Fan, Y. Liao
{"title":"Traveling Wave Based Method for Protecting Power Distribution Systems with Distributed Generations","authors":"Wen Fan, Y. Liao","doi":"10.1109/IESC47067.2019.8976606","DOIUrl":null,"url":null,"abstract":"Active distribution systems with high penetration of inverter based distributed generations such as solar generation have characteristics of varied fundamental frequency fault current contributions and lack of zero and negative sequence fault currents. Therefore, existing protection methods based on increase of short circuit currents due to faults may not work well. On the other hand, faults usually generate high frequency transients which are affected little by the output of solar generations. So, harnessing the fault generated high frequency transients may be a promising way to design new, effective protection scheme for inverter based generation dominated distribution systems. This paper presents a novel graph theory and traveling wave based method for protecting power distribution systems. Methods for accurate pinpointing of the fault through use of multiple and single recording of traveling waves are described. Different factors including sampling rates, number of recordings, system configurations, etc., which may affect the performance of the methods, are discussed. Evaluation studies based on simulation are reported.","PeriodicalId":224190,"journal":{"name":"2019 International Energy and Sustainability Conference (IESC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Energy and Sustainability Conference (IESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESC47067.2019.8976606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Active distribution systems with high penetration of inverter based distributed generations such as solar generation have characteristics of varied fundamental frequency fault current contributions and lack of zero and negative sequence fault currents. Therefore, existing protection methods based on increase of short circuit currents due to faults may not work well. On the other hand, faults usually generate high frequency transients which are affected little by the output of solar generations. So, harnessing the fault generated high frequency transients may be a promising way to design new, effective protection scheme for inverter based generation dominated distribution systems. This paper presents a novel graph theory and traveling wave based method for protecting power distribution systems. Methods for accurate pinpointing of the fault through use of multiple and single recording of traveling waves are described. Different factors including sampling rates, number of recordings, system configurations, etc., which may affect the performance of the methods, are discussed. Evaluation studies based on simulation are reported.
基于行波的分布式配电系统保护方法
太阳能发电等基于逆变器的分布式电源普及率高的主动配电系统具有基频故障电流贡献变化大、零序和负序故障电流不足的特点。因此,现有的基于故障引起的短路电流增加的保护方法可能不能很好地发挥作用。另一方面,故障通常产生高频瞬变,受太阳能发电输出的影响很小。因此,利用故障产生的高频暂态可能是设计新的、有效的逆变电源占主导地位的配电系统保护方案的一条有前途的途径。提出了一种基于图论和行波的配电系统保护新方法。描述了通过多次和单次记录行波来精确定位故障的方法。讨论了可能影响方法性能的不同因素,包括采样率、记录次数、系统配置等。报告了基于模拟的评价研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信