Tracking recurrent concept drift in streaming data using ensemble classifiers

S. Ramamurthy, R. Bhatnagar
{"title":"Tracking recurrent concept drift in streaming data using ensemble classifiers","authors":"S. Ramamurthy, R. Bhatnagar","doi":"10.1109/ICMLA.2007.109","DOIUrl":null,"url":null,"abstract":"Streaming data may consist of multiple drifting concepts each having its own underlying data distribution. We present an ensemble learning based approach to handle the data streams having multiple underlying modes. We build a global set of classifiers from sequential data chunks; ensembles are then selected from this global set of classifiers, and new classifiers created if needed, to represent the current concept in the stream. The system is capable of performing any-time classification and to detect concept drift in the stream. In streaming data historic concepts are likely to reappear so we don't delete any of the historic classifiers. Instead, we judiciously select only pertinent classifiers from the global set while forming the ensemble set for a classification task.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

Streaming data may consist of multiple drifting concepts each having its own underlying data distribution. We present an ensemble learning based approach to handle the data streams having multiple underlying modes. We build a global set of classifiers from sequential data chunks; ensembles are then selected from this global set of classifiers, and new classifiers created if needed, to represent the current concept in the stream. The system is capable of performing any-time classification and to detect concept drift in the stream. In streaming data historic concepts are likely to reappear so we don't delete any of the historic classifiers. Instead, we judiciously select only pertinent classifiers from the global set while forming the ensemble set for a classification task.
使用集成分类器跟踪流数据中的循环概念漂移
流数据可能由多个漂移概念组成,每个概念都有自己的底层数据分布。我们提出了一种基于集成学习的方法来处理具有多种底层模式的数据流。我们从顺序数据块中构建一组全局分类器;然后从这个全局分类器集合中选择集成,并根据需要创建新的分类器,以表示流中的当前概念。该系统能够进行任何时间的分类,并检测流中的概念漂移。在流数据中,历史概念可能会重新出现,因此我们不会删除任何历史分类器。相反,我们明智地从全局集中只选择相关的分类器,同时形成分类任务的集成集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信