Infinity

M. Danesi
{"title":"Infinity","authors":"M. Danesi","doi":"10.1093/oso/9780198852247.003.0008","DOIUrl":null,"url":null,"abstract":"The paradoxes of Zeno in antiquity might seem like sophisms, but, as it has turned out, they shed light on mathematical infinity and have led to many derivative ideas in mathematics and science. Zeno’s paradoxes portray movement in terms of discrete points on a number line, where a move from A to B is done in separate (discrete) steps. But the gap in between is continuous. So, to resolve the paradoxes a basic distinction between discrete and continuous is required—a gap that was filled with the calculus much later. The infinity concept became in the nineteenth century the basis for the discovery of new numbers—by the German mathematician Georg Cantor—which seemed at the time to be counterintuitive. This chapter looks at the paradox of infinity and at Cantor’s ingenious discoveries.","PeriodicalId":168472,"journal":{"name":"Pythagoras' Legacy","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pythagoras' Legacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198852247.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paradoxes of Zeno in antiquity might seem like sophisms, but, as it has turned out, they shed light on mathematical infinity and have led to many derivative ideas in mathematics and science. Zeno’s paradoxes portray movement in terms of discrete points on a number line, where a move from A to B is done in separate (discrete) steps. But the gap in between is continuous. So, to resolve the paradoxes a basic distinction between discrete and continuous is required—a gap that was filled with the calculus much later. The infinity concept became in the nineteenth century the basis for the discovery of new numbers—by the German mathematician Georg Cantor—which seemed at the time to be counterintuitive. This chapter looks at the paradox of infinity and at Cantor’s ingenious discoveries.
芝诺的悖论在古代可能看起来像诡辩,但事实证明,它们揭示了数学的无限性,并导致了数学和科学中的许多衍生思想。芝诺悖论用数轴上的离散点来描述运动,从a到B的移动是在单独的(离散的)步骤中完成的。但两者之间的差距是持续的。因此,为了解决这个悖论,离散和连续之间的基本区别是必要的——这个差距后来被微积分填补了。无穷概念在19世纪成为德国数学家乔治·康托尔发现新数字的基础,这在当时似乎是违反直觉的。这一章着眼于无穷悖论和康托尔的巧妙发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信