Fault detection in wheeled mobile robot based on extended kalman filter

A. Jouili, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim
{"title":"Fault detection in wheeled mobile robot based on extended kalman filter","authors":"A. Jouili, B. Boussaid, A. Zouinkhi, M. N. Abdelkrim","doi":"10.1109/STA56120.2022.10019207","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of fault detection in wheeled mobile robots. In fact, the robot is controlled in order to follow a desired trajectory given by applying a well-defined control law. However, faults when appeared may affects the actual trajectory and may lead to unacceptable results. To overcome some drawbacks, we design an Extented Kalman Filter (EKF) to diagnosis eventual faults. Then, the performance of an estimator based on an EKF is simulated based MATLAB Simulink simulations. Finally, the estimated state will then be used for system control purposes.","PeriodicalId":430966,"journal":{"name":"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA56120.2022.10019207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the problem of fault detection in wheeled mobile robots. In fact, the robot is controlled in order to follow a desired trajectory given by applying a well-defined control law. However, faults when appeared may affects the actual trajectory and may lead to unacceptable results. To overcome some drawbacks, we design an Extented Kalman Filter (EKF) to diagnosis eventual faults. Then, the performance of an estimator based on an EKF is simulated based MATLAB Simulink simulations. Finally, the estimated state will then be used for system control purposes.
基于扩展卡尔曼滤波的轮式移动机器人故障检测
本文研究轮式移动机器人的故障检测问题。实际上,通过应用定义良好的控制律来控制机器人以遵循给定的期望轨迹。然而,当故障出现时,可能会影响实际的轨迹,并可能导致不可接受的结果。为了克服一些缺点,我们设计了扩展卡尔曼滤波器(EKF)来诊断最终故障。然后,利用MATLAB Simulink对基于EKF的估计器的性能进行了仿真。最后,估计的状态将用于系统控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信