Dipta Das, Micah Schiewe, Elizabeth Brighton, Mark Fuller, T. Cerný, Miroslav Bures, Karel Frajták, Dongwan Shin, Pavel Tisnovsky
{"title":"Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study","authors":"Dipta Das, Micah Schiewe, Elizabeth Brighton, Mark Fuller, T. Cerný, Miroslav Bures, Karel Frajták, Dongwan Shin, Pavel Tisnovsky","doi":"10.1145/3400286.3418263","DOIUrl":null,"url":null,"abstract":"In modern computing, log files provide a wealth of information regarding the past of a system, including the system failures and security breaches that cost companies and developers a fortune in both time and money. While this information can be used to attempt to recover from a problem, such an approach merely mitigates the damage that has already been done. Detecting problems, however, is not the only information that can be gathered from log files. It is common knowledge that segments of log files, if analyzed correctly, can yield a good idea of what the system is likely going to do next in real-time, allowing a system to take corrective action before any negative actions occur. In this paper, the authors put forth a systematic map of this field of log prediction, screening several hundred papers and finally narrowing down the field to approximately 30 relevant papers. These papers, when broken down, give a good idea of the state of the art, methodologies employed, and future challenges that still must be overcome. Findings and conclusions of this study can be applied to a variety of software systems and components, including classical software systems, as well as software parts of control, or the Internet of Things (IoT) systems.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400286.3418263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In modern computing, log files provide a wealth of information regarding the past of a system, including the system failures and security breaches that cost companies and developers a fortune in both time and money. While this information can be used to attempt to recover from a problem, such an approach merely mitigates the damage that has already been done. Detecting problems, however, is not the only information that can be gathered from log files. It is common knowledge that segments of log files, if analyzed correctly, can yield a good idea of what the system is likely going to do next in real-time, allowing a system to take corrective action before any negative actions occur. In this paper, the authors put forth a systematic map of this field of log prediction, screening several hundred papers and finally narrowing down the field to approximately 30 relevant papers. These papers, when broken down, give a good idea of the state of the art, methodologies employed, and future challenges that still must be overcome. Findings and conclusions of this study can be applied to a variety of software systems and components, including classical software systems, as well as software parts of control, or the Internet of Things (IoT) systems.