Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation

Ângelo de Carvalho Paulino, L. Guimarães, E. H. Shiguemori
{"title":"Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation","authors":"Ângelo de Carvalho Paulino, L. Guimarães, E. H. Shiguemori","doi":"10.4114/intartif.vol22iss63pp162-195","DOIUrl":null,"url":null,"abstract":"Nowadays, there is a remarkable world trend in employing UAVs and drones for diverse applications. The main reasons are that they may cost fractions of manned aircraft and avoid the exposure of human lives to risks. Nevertheless, they depend on positioning systems that may be vulnerable. Therefore, it is necessary to ensure that these systems are as accurate as possible, aiming to improve the navigation. In pursuit of this end, conventional Data Fusion techniques can be employed. However, its computational cost may be prohibitive due to the low payload of some UAVs. This paper proposes a Multisensor Data Fusion application based on Hybrid Adaptive Computational Intelligence - the cascaded use of Fuzzy C-Means Clustering (FCM) and Adaptive-Network-Based Fuzzy Inference System (ANFIS) algorithms - that have been shown able to improve the accuracy of current positioning estimation systems for real-time UAV autonomous navigation. In addition, the proposed methodology outperformed two other Computational Intelligence techniques.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol22iss63pp162-195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Nowadays, there is a remarkable world trend in employing UAVs and drones for diverse applications. The main reasons are that they may cost fractions of manned aircraft and avoid the exposure of human lives to risks. Nevertheless, they depend on positioning systems that may be vulnerable. Therefore, it is necessary to ensure that these systems are as accurate as possible, aiming to improve the navigation. In pursuit of this end, conventional Data Fusion techniques can be employed. However, its computational cost may be prohibitive due to the low payload of some UAVs. This paper proposes a Multisensor Data Fusion application based on Hybrid Adaptive Computational Intelligence - the cascaded use of Fuzzy C-Means Clustering (FCM) and Adaptive-Network-Based Fuzzy Inference System (ANFIS) algorithms - that have been shown able to improve the accuracy of current positioning estimation systems for real-time UAV autonomous navigation. In addition, the proposed methodology outperformed two other Computational Intelligence techniques.
基于混合自适应计算智能的多传感器数据融合在无人机实时自主导航中的应用
如今,使用无人机和无人机进行多样化应用是一个显着的世界趋势。主要原因是它们的成本可能只是有人驾驶飞机的一小部分,并避免了人类生命的危险。然而,它们依赖的定位系统可能很脆弱。因此,有必要确保这些系统尽可能准确,以改善导航。为了实现这一目标,可以采用传统的数据融合技术。然而,由于一些无人机的低载荷,它的计算成本可能是令人望而却步的。本文提出了一种基于混合自适应计算智能的多传感器数据融合应用-模糊c均值聚类(FCM)和基于自适应网络的模糊推理系统(ANFIS)算法的级联使用-已被证明能够提高当前无人机实时自主导航定位估计系统的精度。此外,所提出的方法优于其他两种计算智能技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信