Reward-driven learning of sensorimotor laws and visual features

Jens Kleesiek, A. Engel, C. Weber, S. Wermter
{"title":"Reward-driven learning of sensorimotor laws and visual features","authors":"Jens Kleesiek, A. Engel, C. Weber, S. Wermter","doi":"10.1109/DEVLRN.2011.6037358","DOIUrl":null,"url":null,"abstract":"A frequently reoccurring task of humanoid robots is the autonomous navigation towards a goal position. Here we present a simulation of a purely vision-based docking behavior in a 3-D physical world. The robot learns sensorimotor laws and visual features simultaneously and exploits both for navigation towards its virtual target region. The control laws are trained using a two-layer network consisting of a feature (sensory) layer that feeds into an action (Q-value) layer. A reinforcement feedback signal (delta) modulates not only the action but at the same time the feature weights. Under this influence, the network learns interpretable visual features and assigns goal-directed actions successfully. This is a step towards investigating how reinforcement learning can be linked to visual perception.","PeriodicalId":256921,"journal":{"name":"2011 IEEE International Conference on Development and Learning (ICDL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2011.6037358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A frequently reoccurring task of humanoid robots is the autonomous navigation towards a goal position. Here we present a simulation of a purely vision-based docking behavior in a 3-D physical world. The robot learns sensorimotor laws and visual features simultaneously and exploits both for navigation towards its virtual target region. The control laws are trained using a two-layer network consisting of a feature (sensory) layer that feeds into an action (Q-value) layer. A reinforcement feedback signal (delta) modulates not only the action but at the same time the feature weights. Under this influence, the network learns interpretable visual features and assigns goal-directed actions successfully. This is a step towards investigating how reinforcement learning can be linked to visual perception.
感觉运动规律和视觉特征的奖励驱动学习
人形机器人的一个经常出现的任务是自主导航到目标位置。在这里,我们提出了一个在三维物理世界中纯基于视觉的对接行为的模拟。机器人同时学习感觉运动规律和视觉特征,并利用两者导航到虚拟目标区域。控制律使用一个两层网络进行训练,该网络由一个特征(感觉)层组成,该特征(感觉)层输入一个动作(q值)层。强化反馈信号(delta)不仅调制动作,同时也调制特征权重。在这种影响下,网络学习到可解释的视觉特征,并成功地分配了目标导向的动作。这是研究如何将强化学习与视觉感知联系起来的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信