{"title":"Quasi-optimal energy path planning for anthropomorphic manipulator using gravity torque mapping","authors":"Sang Beom Woo, A. Bodrov, J. Apsley","doi":"10.1109/IWED.2018.8321384","DOIUrl":null,"url":null,"abstract":"In this paper, the energy used to hold the position of a robot arm against gravitational torque is presented. As the gravitational torque is static over the pose of the manipulator, it is possible to draw an energy map in a 2D grid. To reduce the energy used in a point-to-point movement, a modified Dijkstra's path-finding algorithm is used. Generally, Dijkstra's algorithm finds the shortest path on the grid, but in this paper, it is modified to generate the path with minimum use of position-holding energy. After generating the joint path off line, the energy use is compared between a conventional path and the proposed method is evaluated in a simulation including full dynamics.","PeriodicalId":132863,"journal":{"name":"2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWED.2018.8321384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the energy used to hold the position of a robot arm against gravitational torque is presented. As the gravitational torque is static over the pose of the manipulator, it is possible to draw an energy map in a 2D grid. To reduce the energy used in a point-to-point movement, a modified Dijkstra's path-finding algorithm is used. Generally, Dijkstra's algorithm finds the shortest path on the grid, but in this paper, it is modified to generate the path with minimum use of position-holding energy. After generating the joint path off line, the energy use is compared between a conventional path and the proposed method is evaluated in a simulation including full dynamics.