Swarm Search Algorithm Based on Chemotactic Behaviors of Caenorhabditis elegans Nematodes

Seiya Nomoto, Y. Hattori, D. Kurabayashi
{"title":"Swarm Search Algorithm Based on Chemotactic Behaviors of Caenorhabditis elegans Nematodes","authors":"Seiya Nomoto, Y. Hattori, D. Kurabayashi","doi":"10.20965/jrm.2023.p0911","DOIUrl":null,"url":null,"abstract":"We investigated the chemotactic behaviors of the nematode Caenorhabditis elegans, whose individuals have only 302 neurons but might sense the density of other individuals. As an individual detects areas with high concentration of a target chemical, mimicking their behavior may improve the exploration efficiency of autonomous distributed agents with limited sensing area and no direct communication with others. Inspired by this behavior, we experimentally determined the relationship between the density of individuals and probability of rapid turns to develop a search algorithm. We found a parameter set of “elite” individuals that achieved a high similarity of individual distributions with respect to a chemical gradient. Then, we implemented a motion selection algorithm that reflects the observation results so that an autonomous distributed agent, which has limited sensing range, achieves effective searching in a multi-peak environment. We simulated autonomous agents and applied the parameter sets obtained from elite, inferior, and single individuals. Through verifications using various benchmark potential functions, we concluded that the parameters of the elite group improved the search efficiency.","PeriodicalId":178614,"journal":{"name":"J. Robotics Mechatronics","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p0911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the chemotactic behaviors of the nematode Caenorhabditis elegans, whose individuals have only 302 neurons but might sense the density of other individuals. As an individual detects areas with high concentration of a target chemical, mimicking their behavior may improve the exploration efficiency of autonomous distributed agents with limited sensing area and no direct communication with others. Inspired by this behavior, we experimentally determined the relationship between the density of individuals and probability of rapid turns to develop a search algorithm. We found a parameter set of “elite” individuals that achieved a high similarity of individual distributions with respect to a chemical gradient. Then, we implemented a motion selection algorithm that reflects the observation results so that an autonomous distributed agent, which has limited sensing range, achieves effective searching in a multi-peak environment. We simulated autonomous agents and applied the parameter sets obtained from elite, inferior, and single individuals. Through verifications using various benchmark potential functions, we concluded that the parameters of the elite group improved the search efficiency.
基于趋化行为的秀丽隐杆线虫群搜索算法
我们研究了秀丽隐杆线虫(Caenorhabditis elegans)的趋化行为,它的个体只有302个神经元,但可以感知其他个体的密度。当个体探测到目标化学物质浓度较高的区域时,模仿它们的行为可以提高感知区域有限且无法与其他个体直接通信的自主分布式智能体的探测效率。受到这种行为的启发,我们通过实验确定了个体密度与快速转弯概率之间的关系,从而开发了一种搜索算法。我们发现了一组“精英”个体的参数集,它们在化学梯度方面实现了个体分布的高度相似性。然后,我们实现了一种反映观测结果的运动选择算法,使传感范围有限的自主分布式智能体在多峰环境下实现有效的搜索。我们模拟了自主代理,并应用了从精英、劣等和单个个体获得的参数集。通过各种基准势函数的验证,我们得出精英群参数提高了搜索效率的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信