Arithmetic Billiards

Antonella Perucca, Joe Reguengo De Sousa, S. Tronto
{"title":"Arithmetic Billiards","authors":"Antonella Perucca, Joe Reguengo De Sousa, S. Tronto","doi":"10.2478/rmm-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Arithmetic billiards show a nice interplay between arithmetics and geometry. The billiard table is a rectangle with integer side lengths. A pointwise ball moves with constant speed along segments making a 45° angle with the sides and bounces on these. In the classical setting, the ball is shooted from a corner and lands in a corner. We allow the ball to start at any point with integer distances from the sides: either the ball lands in a corner or the trajectory is periodic. The length of the path and of certain segments in the path are precisely (up to the factor √2 or 2√2) the least common multiple and the greatest common divisor of the side lengths.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"31 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Arithmetic billiards show a nice interplay between arithmetics and geometry. The billiard table is a rectangle with integer side lengths. A pointwise ball moves with constant speed along segments making a 45° angle with the sides and bounces on these. In the classical setting, the ball is shooted from a corner and lands in a corner. We allow the ball to start at any point with integer distances from the sides: either the ball lands in a corner or the trajectory is periodic. The length of the path and of certain segments in the path are precisely (up to the factor √2 or 2√2) the least common multiple and the greatest common divisor of the side lengths.
算术台球
算术台球显示了算术与几何之间良好的相互作用。台球桌是一个边长为整数的矩形。一个点式球以恒定的速度沿着与侧面成45°角的部分移动,并在这些部分上反弹。在经典的比赛中,球从角球处射出并落在角球上。我们允许球从距离两边整数距离的任何点开始:要么球落在角落里,要么轨迹是周期性的。路径的长度和路径中某些部分的长度恰好是(直到√2或2√2)边长的最小公倍数和最大公约数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信