Antonella Perucca, Joe Reguengo De Sousa, S. Tronto
{"title":"Arithmetic Billiards","authors":"Antonella Perucca, Joe Reguengo De Sousa, S. Tronto","doi":"10.2478/rmm-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Arithmetic billiards show a nice interplay between arithmetics and geometry. The billiard table is a rectangle with integer side lengths. A pointwise ball moves with constant speed along segments making a 45° angle with the sides and bounces on these. In the classical setting, the ball is shooted from a corner and lands in a corner. We allow the ball to start at any point with integer distances from the sides: either the ball lands in a corner or the trajectory is periodic. The length of the path and of certain segments in the path are precisely (up to the factor √2 or 2√2) the least common multiple and the greatest common divisor of the side lengths.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"31 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Arithmetic billiards show a nice interplay between arithmetics and geometry. The billiard table is a rectangle with integer side lengths. A pointwise ball moves with constant speed along segments making a 45° angle with the sides and bounces on these. In the classical setting, the ball is shooted from a corner and lands in a corner. We allow the ball to start at any point with integer distances from the sides: either the ball lands in a corner or the trajectory is periodic. The length of the path and of certain segments in the path are precisely (up to the factor √2 or 2√2) the least common multiple and the greatest common divisor of the side lengths.