Brain tissue classification of alzheimer disease using partial volume possibilistic modeling: Application to ADNI phantom images

L. Lazli, M. Boukadoum, O. Mohamed
{"title":"Brain tissue classification of alzheimer disease using partial volume possibilistic modeling: Application to ADNI phantom images","authors":"L. Lazli, M. Boukadoum, O. Mohamed","doi":"10.1109/IPTA.2017.8310095","DOIUrl":null,"url":null,"abstract":"This paper describes an automatic segmentation approach for PET and T1-weighted MR images using a possibilistic clustering algorithm for deriving fuzzy tissue maps of white matter, gray matter and cerebrospinal fluid volumes, and using the fuzzy C-means algorithm for the centers initialization process; this hybrid technique allows to compute the degree of membership of each voxel to different brain tissues. The fuzzy process is illustrated for Alzheimer's disease using phantom images from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our method, inspired from the conventional possibilistic algorithm, is less sensitive to noise while taking into consideration the effect of partial volume.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes an automatic segmentation approach for PET and T1-weighted MR images using a possibilistic clustering algorithm for deriving fuzzy tissue maps of white matter, gray matter and cerebrospinal fluid volumes, and using the fuzzy C-means algorithm for the centers initialization process; this hybrid technique allows to compute the degree of membership of each voxel to different brain tissues. The fuzzy process is illustrated for Alzheimer's disease using phantom images from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our method, inspired from the conventional possibilistic algorithm, is less sensitive to noise while taking into consideration the effect of partial volume.
利用部分体积可能性模型对阿尔茨海默病脑组织分类:在ADNI幻像中的应用
本文描述了一种PET和t1加权MR图像的自动分割方法,该方法使用可能性聚类算法来获得白质、灰质和脑脊液体积的模糊组织图,并使用模糊c均值算法进行中心初始化过程;这种混合技术允许计算每个体素与不同脑组织的隶属度。模糊过程是用阿尔茨海默病神经成像倡议(ADNI)的幻像来说明阿尔茨海默病的。该方法借鉴了传统的可能性算法,在考虑局部体积影响的同时,降低了对噪声的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信