Development of a methodology for calculating carbon units of heterogeneous territories based on machine learning

I. Vasendina, K. Shoshina, V. Berezovsky, R. Aleshko, R. Vorontsov, T. Desyatova
{"title":"Development of a methodology for calculating carbon units of heterogeneous territories based on machine learning","authors":"I. Vasendina, K. Shoshina, V. Berezovsky, R. Aleshko, R. Vorontsov, T. Desyatova","doi":"10.1109/ITNT57377.2023.10139264","DOIUrl":null,"url":null,"abstract":"The paper describes a method for calculating carbon units of heterogeneous territories based on machine learning. The hierarchical structure of areal territories and the structure of the interconnection of multi-scale images are described. An approach is given to identify and classify terrain objects in order to more accurately calculate the carbon reserve of the territory.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes a method for calculating carbon units of heterogeneous territories based on machine learning. The hierarchical structure of areal territories and the structure of the interconnection of multi-scale images are described. An approach is given to identify and classify terrain objects in order to more accurately calculate the carbon reserve of the territory.
基于机器学习的异质区域碳单元计算方法的开发
本文描述了一种基于机器学习的异构区域碳单元计算方法。描述了区域的层次结构和多尺度图像的互联结构。为了更准确地计算土地碳储量,提出了一种地物识别和分类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信