{"title":"Dynamics Model of Paramecium Galvanotaxis for Microrobotic Application","authors":"N. Ogawa, H. Oku, K. Hashimoto, M. Ishikawa","doi":"10.1109/ROBOT.2005.1570286","DOIUrl":null,"url":null,"abstract":"We propose a dynamics model of galvanotaxis (locomotor response to electrical stimulus) of the protozoan Paramecium. Our purpose is to utilize microorganisms as micro-robots by using galvanotaxis. For precise and advanced actuation, it is necessary to describe the dynamics of galvanotaxis in a mathematical and quantitative manner in the framework of robotics. However, until now the explanation of Paramecium galvanotaxis in previous works has remained only qualitative. In this paper, we construct a novel model of galvanotaxis as a minimal step to utilizing Paramecium cells as micro-robots. Numerical experiments for our model demonstrate realistic behaviors, such as U-turn motions, like those of real cells.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We propose a dynamics model of galvanotaxis (locomotor response to electrical stimulus) of the protozoan Paramecium. Our purpose is to utilize microorganisms as micro-robots by using galvanotaxis. For precise and advanced actuation, it is necessary to describe the dynamics of galvanotaxis in a mathematical and quantitative manner in the framework of robotics. However, until now the explanation of Paramecium galvanotaxis in previous works has remained only qualitative. In this paper, we construct a novel model of galvanotaxis as a minimal step to utilizing Paramecium cells as micro-robots. Numerical experiments for our model demonstrate realistic behaviors, such as U-turn motions, like those of real cells.