A new class of nonlinearly constrained linear estimator

S. Konyk, M. Amin
{"title":"A new class of nonlinearly constrained linear estimator","authors":"S. Konyk, M. Amin","doi":"10.1109/ICASSP.1988.197089","DOIUrl":null,"url":null,"abstract":"The problem of model parameter estimation subject to a simple class of nonlinear constraints in the time domain is addressed. The model parameters correspond to tap-delay filter weights and are used to approximate, within the constraints, a desired signal in the mean-square sense. The class of nonlinear constraints consists of convex quadratic functions with one-dimensional null space. This class, which includes the variance of the weight vector, allows the constrained optimization problem to be carried out by two successive unconstrained optimization algorithms implemented in multidimensional and unidimensional spaces. When the least-mean-squares (LMS) technique is used in both spaces, it is shown that the overall convergence time is not influenced by the constraint, i.e. it is primarily determined by the constraint-free LMS algorithm in the multidimensional space.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.197089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of model parameter estimation subject to a simple class of nonlinear constraints in the time domain is addressed. The model parameters correspond to tap-delay filter weights and are used to approximate, within the constraints, a desired signal in the mean-square sense. The class of nonlinear constraints consists of convex quadratic functions with one-dimensional null space. This class, which includes the variance of the weight vector, allows the constrained optimization problem to be carried out by two successive unconstrained optimization algorithms implemented in multidimensional and unidimensional spaces. When the least-mean-squares (LMS) technique is used in both spaces, it is shown that the overall convergence time is not influenced by the constraint, i.e. it is primarily determined by the constraint-free LMS algorithm in the multidimensional space.<>
一类新的非线性约束线性估计量
研究了一类简单的时域非线性约束下的模型参数估计问题。模型参数对应于分接延迟滤波器权值,并用于在约束条件下以均方意义近似期望信号。一类非线性约束由具有一维零空间的凸二次函数组成。该类包含了权向量的方差,使得约束优化问题可以通过在多维和一维空间中实现的两种连续的无约束优化算法来实现。当在这两个空间中使用最小均二乘(LMS)技术时,表明总体收敛时间不受约束的影响,即主要由多维空间中的无约束LMS算法决定
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信