Estimating Rewards & Rare Events in Nondeterministic Systems

Axel Legay, Sean Sedwards, Louis-Marie Traonouez
{"title":"Estimating Rewards & Rare Events in Nondeterministic Systems","authors":"Axel Legay, Sean Sedwards, Louis-Marie Traonouez","doi":"10.14279/tuj.eceasst.72.1023","DOIUrl":null,"url":null,"abstract":"Exhaustive verification can quantify critical behaviour arising from concurrency in nondeterministic models. Rare events typically entail no additional challenge, but complex systems are generally intractable. Recent work on Markov decision processes allows the extremal probabilities of a property to be estimated using Monte Carlo techniques, offering the potential to handle much larger models. Here we present algorithms to estimate extremal rewards and consider the challenges posed by rarity. We find that rewards require a different interpretation of confidence and that reachability rewards require the introduction of an auxiliary hypothesis test. We show how importance sampling can significantly improve estimation when probabilities are low, but find it is not a panacea for rare schedulers.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/tuj.eceasst.72.1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Exhaustive verification can quantify critical behaviour arising from concurrency in nondeterministic models. Rare events typically entail no additional challenge, but complex systems are generally intractable. Recent work on Markov decision processes allows the extremal probabilities of a property to be estimated using Monte Carlo techniques, offering the potential to handle much larger models. Here we present algorithms to estimate extremal rewards and consider the challenges posed by rarity. We find that rewards require a different interpretation of confidence and that reachability rewards require the introduction of an auxiliary hypothesis test. We show how importance sampling can significantly improve estimation when probabilities are low, but find it is not a panacea for rare schedulers.
非确定性系统中的奖励估计与罕见事件
穷举验证可以量化非确定性模型中并发产生的关键行为。罕见事件通常不会带来额外的挑战,但复杂系统通常难以处理。最近关于马尔可夫决策过程的研究允许使用蒙特卡罗技术估计属性的极端概率,从而提供了处理更大模型的潜力。在这里,我们提出了估计极端奖励的算法,并考虑了罕见性带来的挑战。我们发现,奖励需要对信心的不同解释,而可达性奖励需要引入辅助假设检验。我们展示了重要性采样如何在概率较低时显著改善估计,但发现它不是罕见调度器的灵丹妙药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信