Multi-UAV Data Collection Optimization for Sink Node and Trajectory Planning in WSN

Mesfin Leranso Betalo, S. Leng, Longyu Zhou, Maged Fakirah
{"title":"Multi-UAV Data Collection Optimization for Sink Node and Trajectory Planning in WSN","authors":"Mesfin Leranso Betalo, S. Leng, Longyu Zhou, Maged Fakirah","doi":"10.1109/CCAI55564.2022.9807699","DOIUrl":null,"url":null,"abstract":"Unmanned Areal Vehicles (UAVs) can be employed for temporary missions with flight ability while exposing limited flight energy and time due to restricted battery life. In this paper, to minimize the total energy consumption of both UAVs, the effective use of sink nodes’ power, we optimize both the number of sink nodes and the trajectories of multiple UAVs in WSN. In our scenario, all UAVs start their mission from the location of the charging station and back into the same charging station after finishing their data collection tasks. Specifically, we select the number of sink nodes using the Genetic Algorithm to maximize the lifetime WSN. The Multiple Traveling Salesman Problem (MTSP) based path planning algorithm is proposed to solve the trajectory using Held-Karp lower bound method for the trajectory path of UAV. The particle swarm optimization (PSO) and GA algorithm are demonstrated to get the feasible performance solution of the simulation results.","PeriodicalId":340195,"journal":{"name":"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAI55564.2022.9807699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned Areal Vehicles (UAVs) can be employed for temporary missions with flight ability while exposing limited flight energy and time due to restricted battery life. In this paper, to minimize the total energy consumption of both UAVs, the effective use of sink nodes’ power, we optimize both the number of sink nodes and the trajectories of multiple UAVs in WSN. In our scenario, all UAVs start their mission from the location of the charging station and back into the same charging station after finishing their data collection tasks. Specifically, we select the number of sink nodes using the Genetic Algorithm to maximize the lifetime WSN. The Multiple Traveling Salesman Problem (MTSP) based path planning algorithm is proposed to solve the trajectory using Held-Karp lower bound method for the trajectory path of UAV. The particle swarm optimization (PSO) and GA algorithm are demonstrated to get the feasible performance solution of the simulation results.
基于汇聚节点的多无人机数据采集优化与WSN轨迹规划
无人机(uav)可以用于具有飞行能力的临时任务,同时由于电池寿命有限而暴露有限的飞行能量和时间。在本文中,为了使两架无人机的总能量消耗最小化,有效地利用汇聚节点的功率,我们对WSN中多架无人机的汇聚节点数量和轨迹进行了优化。在我们的场景中,所有的无人机都从充电站的位置开始任务,完成数据收集任务后返回同一个充电站。具体来说,我们使用遗传算法选择汇聚节点的数量以最大化WSN的生存期。提出了基于多旅行商问题(MTSP)的路径规划算法,利用hold - karp下界法求解无人机的轨迹路径。采用粒子群算法和遗传算法对仿真结果进行了验证,得到了可行的性能解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信