{"title":"Multiphase LBM Distributed over Multiple GPUs","authors":"C. Rosales","doi":"10.1109/CLUSTER.2011.9","DOIUrl":null,"url":null,"abstract":"A parallel distributed CUDA implementation of a Lattice Boltzmann Method for multiphase flows with large density ratios is described in this paper. Validation runs studying the terminal velocity of a rising bubble under the effect of gravity show good agreement with the expected theoretical values. The code is benchmarked against the performance of a typical CPU implementation of the same algorithm on both AMD and Intel platforms, and a single GPU is observed to perform up to 10X faster than a quad-core CPU socket, a 40X speedup with respect to a single core. The code is shown to scale well when executed on multiple GPUs, which makes the port to CUDA valuable even when compared to parallel CPU implementations.","PeriodicalId":200830,"journal":{"name":"2011 IEEE International Conference on Cluster Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2011.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A parallel distributed CUDA implementation of a Lattice Boltzmann Method for multiphase flows with large density ratios is described in this paper. Validation runs studying the terminal velocity of a rising bubble under the effect of gravity show good agreement with the expected theoretical values. The code is benchmarked against the performance of a typical CPU implementation of the same algorithm on both AMD and Intel platforms, and a single GPU is observed to perform up to 10X faster than a quad-core CPU socket, a 40X speedup with respect to a single core. The code is shown to scale well when executed on multiple GPUs, which makes the port to CUDA valuable even when compared to parallel CPU implementations.