Unsupervised Anomaly Detection by Autoencoder with Feature Decomposition

Yihao Guo, Xinning Zhu, Zheng Hu, Zhiqiang Zhan
{"title":"Unsupervised Anomaly Detection by Autoencoder with Feature Decomposition","authors":"Yihao Guo, Xinning Zhu, Zheng Hu, Zhiqiang Zhan","doi":"10.1145/3529836.3529924","DOIUrl":null,"url":null,"abstract":"In unsupervised anomaly detection tasks, a crucial challenge is modeling the underlying structure of normal data without knowing the definition or ratio of anomalies. The introduction of robustness against anomalous data in autoencoder architecture is a significant research focus in order to address this challenge. In this paper, we propose a model implemented by an autoencoder with two decoders, called Feature Decomposition AutoEncoder (FDAE). It maps all data into a high-dimensional latent feature space. Many studies have proved RSR technology and RPCA technology to improve the performance of anomaly detection models. FDAE employs RSR and RPCA techniques in the latent space to decompose latent features into normal features and abnormal features, then decodes them separately using two decoders. Furthermore, we design an optimization strategy to enable FDAE to prioritize modeling the underlying structure of normal data from unlabeled data to reduce the interference caused by unknown anomalous data. We demonstrate the high performance of FDAE in unsupervised anomaly detection tasks through experiments on five public datasets. In addition, we study the variation of FDAE’s anomaly detection capability under different noise scenarios on the MNIST dataset.","PeriodicalId":285191,"journal":{"name":"2022 14th International Conference on Machine Learning and Computing (ICMLC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Machine Learning and Computing (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529836.3529924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In unsupervised anomaly detection tasks, a crucial challenge is modeling the underlying structure of normal data without knowing the definition or ratio of anomalies. The introduction of robustness against anomalous data in autoencoder architecture is a significant research focus in order to address this challenge. In this paper, we propose a model implemented by an autoencoder with two decoders, called Feature Decomposition AutoEncoder (FDAE). It maps all data into a high-dimensional latent feature space. Many studies have proved RSR technology and RPCA technology to improve the performance of anomaly detection models. FDAE employs RSR and RPCA techniques in the latent space to decompose latent features into normal features and abnormal features, then decodes them separately using two decoders. Furthermore, we design an optimization strategy to enable FDAE to prioritize modeling the underlying structure of normal data from unlabeled data to reduce the interference caused by unknown anomalous data. We demonstrate the high performance of FDAE in unsupervised anomaly detection tasks through experiments on five public datasets. In addition, we study the variation of FDAE’s anomaly detection capability under different noise scenarios on the MNIST dataset.
基于特征分解的自编码器无监督异常检测
在无监督异常检测任务中,一个关键的挑战是在不知道异常的定义或比例的情况下对正常数据的底层结构进行建模。为了解决这一挑战,在自编码器架构中引入对异常数据的鲁棒性是一个重要的研究重点。在本文中,我们提出了一个由两个解码器的自编码器实现的模型,称为特征分解自编码器(FDAE)。它将所有数据映射到高维潜在特征空间。许多研究已经证明RSR技术和RPCA技术可以提高异常检测模型的性能。FDAE在潜在空间中采用RSR和RPCA技术,将潜在特征分解为正常特征和异常特征,然后分别使用两个解码器进行解码。此外,我们设计了一种优化策略,使FDAE能够优先从未标记数据中对正常数据的底层结构进行建模,以减少未知异常数据造成的干扰。我们通过在五个公共数据集上的实验证明了FDAE在无监督异常检测任务中的高性能。此外,我们还研究了在MNIST数据集上不同噪声场景下FDAE异常检测能力的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信