{"title":"Reconfiguring a hypercube in the presence of faults","authors":"J. Håstad, F. Leighton, M. Newman","doi":"10.1145/28395.28425","DOIUrl":null,"url":null,"abstract":"We consider the computational power of a hypercube containing a potentially large number of randomly located faulty components. In particular, we describe algorithms for embedding an N/2-node hypercube in an N-node hypercube with faulty processors. Provided that the processors of the N-node hypercube are faulty with probability p < 1/2, and that the faults are independently distributed, we show that with high probability, adjacent cells in the N/2-node hypercube are mapped to functioning cells at distance 3 or less apart in the N-node hypercube. The algorithm is deterministic, easy to implement and runs in &Ogr;(log N) steps using only local control. We also describe ways to produce embeddings which allow for low delay simulations, as well as ways to use a faulty hypercube to efficiently simulate a completely functioning hypercube of the same size.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119
Abstract
We consider the computational power of a hypercube containing a potentially large number of randomly located faulty components. In particular, we describe algorithms for embedding an N/2-node hypercube in an N-node hypercube with faulty processors. Provided that the processors of the N-node hypercube are faulty with probability p < 1/2, and that the faults are independently distributed, we show that with high probability, adjacent cells in the N/2-node hypercube are mapped to functioning cells at distance 3 or less apart in the N-node hypercube. The algorithm is deterministic, easy to implement and runs in &Ogr;(log N) steps using only local control. We also describe ways to produce embeddings which allow for low delay simulations, as well as ways to use a faulty hypercube to efficiently simulate a completely functioning hypercube of the same size.