Workload Characterization of Autonomic DBMSs Using Statistical and Data Mining Techniques

Zerihun Zewdu, M. Denko, M. Libsie
{"title":"Workload Characterization of Autonomic DBMSs Using Statistical and Data Mining Techniques","authors":"Zerihun Zewdu, M. Denko, M. Libsie","doi":"10.1109/WAINA.2009.159","DOIUrl":null,"url":null,"abstract":"In this paper a model where an autonomic DBMS can identify and characterize the type of workload acting upon it is developed and the most important database status variables which are highly affected by changing workloads are identified. Two algorithms are selected for database workload classification: hierarchical clustering and classification & regression tree for classifying database workloads after running database workloads from TPC (Transaction Processing Performance Council) benchmark queries and transactions. The costs of these workloads are measured in terms of status variables of MySQL. A set of extensive experiments and analyses have been conducted and the results are presented in this paper.","PeriodicalId":159465,"journal":{"name":"2009 International Conference on Advanced Information Networking and Applications Workshops","volume":"236 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2009.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper a model where an autonomic DBMS can identify and characterize the type of workload acting upon it is developed and the most important database status variables which are highly affected by changing workloads are identified. Two algorithms are selected for database workload classification: hierarchical clustering and classification & regression tree for classifying database workloads after running database workloads from TPC (Transaction Processing Performance Council) benchmark queries and transactions. The costs of these workloads are measured in terms of status variables of MySQL. A set of extensive experiments and analyses have been conducted and the results are presented in this paper.
基于统计和数据挖掘技术的自主dbms工作负载表征
在本文中,开发了一个模型,其中自治DBMS可以识别和描述作用于它的工作负载类型,并确定了受工作负载变化高度影响的最重要的数据库状态变量。数据库工作负载分类选择了两种算法:层次聚类算法和分类回归树算法,用于在运行TPC (Transaction Processing Performance Council)基准查询和事务的数据库工作负载后对数据库工作负载进行分类。这些工作负载的成本是根据MySQL的状态变量来衡量的。本文进行了一系列广泛的实验和分析,并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信