{"title":"Towards a multi-scale virtual heart model","authors":"Zexian Wang, F. Varray, P. Clarysse, I. Magnin","doi":"10.1109/ICSP48669.2020.9321058","DOIUrl":null,"url":null,"abstract":"This paper presents a three-dimensional multiscale structure and object-oriented model to generate a synthetic heart. This model consists of a series of elementary objects at different resolution level from the macro- to the micro-scale. Each object is described by a vector of attributes. The shapes and size of the components of the tissue are inspired from Synchrotron Radiation Phase micro-Computed Tomography (SR-PCT) of human left ventricle wall samples. To enhance the similarity between the model and the experimental data, we use a Free-Form Deformation (FFD) technique to deform each object. Our first results demonstrate that the model can simulate realistic voxel-based elementary objects and simulate experimental data and shapes. The hierarchical graph structure of the model that includes inter level relationships has a strong potential interest.","PeriodicalId":237073,"journal":{"name":"2020 15th IEEE International Conference on Signal Processing (ICSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th IEEE International Conference on Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP48669.2020.9321058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a three-dimensional multiscale structure and object-oriented model to generate a synthetic heart. This model consists of a series of elementary objects at different resolution level from the macro- to the micro-scale. Each object is described by a vector of attributes. The shapes and size of the components of the tissue are inspired from Synchrotron Radiation Phase micro-Computed Tomography (SR-PCT) of human left ventricle wall samples. To enhance the similarity between the model and the experimental data, we use a Free-Form Deformation (FFD) technique to deform each object. Our first results demonstrate that the model can simulate realistic voxel-based elementary objects and simulate experimental data and shapes. The hierarchical graph structure of the model that includes inter level relationships has a strong potential interest.