On LTL Model Checking for Low-Dimensional Discrete Linear Dynamical Systems

T. Karimov, J. Ouaknine, J. Worrell
{"title":"On LTL Model Checking for Low-Dimensional Discrete Linear Dynamical Systems","authors":"T. Karimov, J. Ouaknine, J. Worrell","doi":"10.4230/LIPIcs.MFCS.2020.54","DOIUrl":null,"url":null,"abstract":"Consider a discrete dynamical system given by a square matrix $M \\in \\mathbb{Q}^{d \\times d}$ and a starting point $s \\in \\mathbb{Q}^d$. The orbit of such a system is the infinite trajectory $\\langle s, Ms, M^2s, \\ldots\\rangle$. Given a collection $T_1, T_2, \\ldots, T_m \\subseteq \\mathbb{R}^d$ of semialgebraic sets, we can associate with each $T_i$ an atomic proposition $P_i$ which evaluates to true at time $n$ if, and only if, $M^ns \\in T_i$. This gives rise to the LTL Model-Checking Problem for discrete linear dynamical systems: given such a system $(M,s)$ and an LTL formula over such atomic propositions, determine whether the orbit satisfies the formula. The main contribution of the present paper is to show that the LTL Model-Checking Problem for discrete linear dynamical systems is decidable in dimension 3 or less.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Consider a discrete dynamical system given by a square matrix $M \in \mathbb{Q}^{d \times d}$ and a starting point $s \in \mathbb{Q}^d$. The orbit of such a system is the infinite trajectory $\langle s, Ms, M^2s, \ldots\rangle$. Given a collection $T_1, T_2, \ldots, T_m \subseteq \mathbb{R}^d$ of semialgebraic sets, we can associate with each $T_i$ an atomic proposition $P_i$ which evaluates to true at time $n$ if, and only if, $M^ns \in T_i$. This gives rise to the LTL Model-Checking Problem for discrete linear dynamical systems: given such a system $(M,s)$ and an LTL formula over such atomic propositions, determine whether the orbit satisfies the formula. The main contribution of the present paper is to show that the LTL Model-Checking Problem for discrete linear dynamical systems is decidable in dimension 3 or less.
低维离散线性动力系统的LTL模型检验
考虑一个离散动力系统,它由一个方阵$M \in \mathbb{Q}^{d \乘以d}$和一个起点$s \in \mathbb{Q}^d$给出。这样一个系统的轨道是无限轨迹$\langle s, Ms, M^2s, \ldots\rangle$。给定一个半代数集$T_1, T_2, \ldots, T_m \subseteq \mathbb{R}^d$的集合,我们可以与每个$T_i$关联一个原子命题$P_i$,该命题在$n$时刻求值为真当且仅当$M^ns \在T_i$中。这就产生了离散线性动力系统的LTL模型检验问题:给定这样一个系统$(M,s)$和这样一个原子命题上的LTL公式,确定轨道是否满足公式。本文的主要贡献是证明了离散线性动力系统的LTL模型检验问题在3维或更小的维度上是可决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信