Long-Range Monsoon Rainfall Pattern Recognition and Prediction for the Subdivision 'EPMB' Chhattisgarh Using Deterministic and Probabilistic Neural Network

S. Karmakar, M. Kowar, P. Guhathakurta
{"title":"Long-Range Monsoon Rainfall Pattern Recognition and Prediction for the Subdivision 'EPMB' Chhattisgarh Using Deterministic and Probabilistic Neural Network","authors":"S. Karmakar, M. Kowar, P. Guhathakurta","doi":"10.1109/ICAPR.2009.24","DOIUrl":null,"url":null,"abstract":"Attempts to predict long-range monsoon rainfall over the subdivision EPMB, Three layer perception feed forward back propagation deterministic and probabilistic artificial neural network models have been developed. 61 years data for 1945–2006 have been used, of which the first 51 years (1945–1995) of data are used for training the network and data for the period 1996–2006 are used independently for validation. We have found that the mean absolute deviation (% of mean) of the model is less than and half of the standard deviation (% of mean) in the independent period (1996-2006) of the subdivision in deterministic forecast. Correlation between actual and particular model predicted values are more than 0.8 for the districts and 0.7 for the whole subdivision in deterministic forecast. However performance of the model in probabilistic forecast is better evaluated over deterministic forecast. The models developed and their evaluations have been presented in this paper.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Attempts to predict long-range monsoon rainfall over the subdivision EPMB, Three layer perception feed forward back propagation deterministic and probabilistic artificial neural network models have been developed. 61 years data for 1945–2006 have been used, of which the first 51 years (1945–1995) of data are used for training the network and data for the period 1996–2006 are used independently for validation. We have found that the mean absolute deviation (% of mean) of the model is less than and half of the standard deviation (% of mean) in the independent period (1996-2006) of the subdivision in deterministic forecast. Correlation between actual and particular model predicted values are more than 0.8 for the districts and 0.7 for the whole subdivision in deterministic forecast. However performance of the model in probabilistic forecast is better evaluated over deterministic forecast. The models developed and their evaluations have been presented in this paper.
基于确定性和概率神经网络的恰蒂斯加尔邦“EPMB”分区的长期季风降雨模式识别和预测
为了预测EPMB分区上的长期季风降雨,建立了三层感知前馈-反向传播确定性和概率人工神经网络模型。使用了1945-2006年61年的数据,其中前51年(1945-1995)的数据用于训练网络,1996-2006年的数据单独用于验证。我们发现,在确定性预测细分的独立时期(1996-2006年),模型的平均绝对偏差(占平均值的百分比)小于标准差(占平均值的百分比)的一半。在确定性预报中,各区实际预测值与特定模型预测值的相关系数大于0.8,整个分区的相关系数大于0.7。然而,该模型在概率预测中的性能优于确定性预测。本文介绍了所建立的模型及其评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信