{"title":"Image representation based on multi-features","authors":"Xianzhong Long, Lei Chen, Qun Li","doi":"10.1109/ISKE.2017.8258830","DOIUrl":null,"url":null,"abstract":"As one kind of popular application in computer vision, image clustering has attracted many attentions. Some machine learning algorithms have been widely employed, such as K-Means, Non-negative Matrix Factorization (NMF), Graph regularized Non-negative Matrix Factorization (GNMF) and Locally Consistent Concept Factorization (LCCF). These methods possess respective strength and weakness. The common problem existing in these clustering algorithms is that they only use one kind of feature. However, different kinds of features complement each other and can be used to improve performance results. In this paper, in order to make use of the complementarity between different features, we propose an image representation method based on multi-features. Clustering results on several benchmark image data sets show that the proposed scheme outperforms some classical methods.","PeriodicalId":208009,"journal":{"name":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2017.8258830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As one kind of popular application in computer vision, image clustering has attracted many attentions. Some machine learning algorithms have been widely employed, such as K-Means, Non-negative Matrix Factorization (NMF), Graph regularized Non-negative Matrix Factorization (GNMF) and Locally Consistent Concept Factorization (LCCF). These methods possess respective strength and weakness. The common problem existing in these clustering algorithms is that they only use one kind of feature. However, different kinds of features complement each other and can be used to improve performance results. In this paper, in order to make use of the complementarity between different features, we propose an image representation method based on multi-features. Clustering results on several benchmark image data sets show that the proposed scheme outperforms some classical methods.