DeLTA: GPU Performance Model for Deep Learning Applications with In-Depth Memory System Traffic Analysis

Sangkug Lym, Donghyuk Lee, Mike O'Connor, Niladrish Chatterjee, M. Erez
{"title":"DeLTA: GPU Performance Model for Deep Learning Applications with In-Depth Memory System Traffic Analysis","authors":"Sangkug Lym, Donghyuk Lee, Mike O'Connor, Niladrish Chatterjee, M. Erez","doi":"10.1109/ISPASS.2019.00041","DOIUrl":null,"url":null,"abstract":"Training convolutional neural networks (CNNs) requires intense compute throughput and high memory bandwidth. Especially, convolution layers account for the majority of execution time of CNN training, and GPUs are commonly used to accelerate these layer workloads. GPU design optimization for efficient CNN training acceleration requires the accurate modeling of how their performance improves when computing and memory resources are increased. We present DeLTA, the first analytical model that accurately estimates the traffic at each GPU memory hierarchy level, while accounting for the complex reuse patterns of a parallel convolution algorithm. We demonstrate that our model is both accurate and robust for different CNNs and GPU architectures. We then show how this model can be used to carefully balance the scaling of different GPU resources for efficient CNN performance improvement.","PeriodicalId":137786,"journal":{"name":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Training convolutional neural networks (CNNs) requires intense compute throughput and high memory bandwidth. Especially, convolution layers account for the majority of execution time of CNN training, and GPUs are commonly used to accelerate these layer workloads. GPU design optimization for efficient CNN training acceleration requires the accurate modeling of how their performance improves when computing and memory resources are increased. We present DeLTA, the first analytical model that accurately estimates the traffic at each GPU memory hierarchy level, while accounting for the complex reuse patterns of a parallel convolution algorithm. We demonstrate that our model is both accurate and robust for different CNNs and GPU architectures. We then show how this model can be used to carefully balance the scaling of different GPU resources for efficient CNN performance improvement.
DeLTA:基于深度内存系统流量分析的深度学习应用GPU性能模型
训练卷积神经网络(cnn)需要高计算吞吐量和高内存带宽。特别是卷积层占据了CNN训练的大部分执行时间,通常使用gpu来加速这些层的工作负载。高效CNN训练加速的GPU设计优化需要准确建模当计算和内存资源增加时它们的性能如何提高。我们提出DeLTA,这是第一个准确估计每个GPU内存层次级别流量的分析模型,同时考虑了并行卷积算法的复杂重用模式。我们证明了我们的模型对于不同的cnn和GPU架构既准确又鲁棒。然后,我们展示了如何使用该模型来仔细平衡不同GPU资源的缩放,以实现有效的CNN性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信