Machine learning techniques for data analysis in materials science

Claudio Ronchetti, Marco Puccini, S. Ferlito, S. Giusepponi, Filippo Palombi, F. Buonocore, M. Celino
{"title":"Machine learning techniques for data analysis in materials science","authors":"Claudio Ronchetti, Marco Puccini, S. Ferlito, S. Giusepponi, Filippo Palombi, F. Buonocore, M. Celino","doi":"10.23919/AEIT56783.2022.9951839","DOIUrl":null,"url":null,"abstract":"This work applies Graph Neural Networks (GNNs), a class of deep learning methods, to predict physical properties and obtain optimal cathode materials for batteries. Two GNNs are selected: Crystal Graph Convolutional Neural Networks (CGCNN) and the more recent Geometric-Information-Enhanced Crystal Graph Network (GeoCGNN). Both networks are trained on a selected open-source ab initio Density Functional Theory (DFT) dataset for solid-state materials to predict the formation energy and then calculate the redox potential. Numerical results show the inference of the best trained model ran on combinatorial space of interest to discovery the optimal one via multi-objectives method. This approach allows to detect the optimum faster than physics-based computational approaches.","PeriodicalId":253384,"journal":{"name":"2022 AEIT International Annual Conference (AEIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT56783.2022.9951839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work applies Graph Neural Networks (GNNs), a class of deep learning methods, to predict physical properties and obtain optimal cathode materials for batteries. Two GNNs are selected: Crystal Graph Convolutional Neural Networks (CGCNN) and the more recent Geometric-Information-Enhanced Crystal Graph Network (GeoCGNN). Both networks are trained on a selected open-source ab initio Density Functional Theory (DFT) dataset for solid-state materials to predict the formation energy and then calculate the redox potential. Numerical results show the inference of the best trained model ran on combinatorial space of interest to discovery the optimal one via multi-objectives method. This approach allows to detect the optimum faster than physics-based computational approaches.
材料科学中数据分析的机器学习技术
这项工作应用图神经网络(GNNs),一类深度学习方法,来预测物理性质并获得电池的最佳正极材料。本文选择了两种gnn:晶体图卷积神经网络(CGCNN)和最近的几何信息增强晶体图网络(GeoCGNN)。这两个网络都在选定的开源的固态材料从头算密度泛函理论(DFT)数据集上进行训练,以预测地层能量,然后计算氧化还原电位。数值结果表明,用多目标方法对训练好的最佳模型在感兴趣的组合空间上进行推理,从而发现最优模型。这种方法可以比基于物理的计算方法更快地检测到最佳状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信