Identifying Laguerre-Gaussian Modes using Convolutional Neural Network

S. Sharifi, Sofia Brown, I. Novikova, E. Mikhailov, G. Veronis, J. Dowling, Y. Banadaki, Elisha Siddiqui, Savannah Cuzzo, N. Bhusal, L. Cohen, Austin T. Kalasky, N. Prajapati, Rachel Soto-Garcia
{"title":"Identifying Laguerre-Gaussian Modes using Convolutional Neural Network","authors":"S. Sharifi, Sofia Brown, I. Novikova, E. Mikhailov, G. Veronis, J. Dowling, Y. Banadaki, Elisha Siddiqui, Savannah Cuzzo, N. Bhusal, L. Cohen, Austin T. Kalasky, N. Prajapati, Rachel Soto-Garcia","doi":"10.1109/ICMLA.2019.00088","DOIUrl":null,"url":null,"abstract":"An automated determination of Laguerre-Gaussian (LG) modes benefits cavity tuning and optical communication. In this paper, we employ machine learning techniques to automatically detect the lowest sixteen LG modes of a laser beam. Convolutional neural networks (CNN) are trained by collecting the experimental and simulated datasets of LG modes that relies only on the intensity images of their unique patterns. We demonstrate that the trained CNN model can detect LG modes with the maximum accuracy greater than 96% after 60 epochs. The study evaluates the CNN's ability to generalize to new data and adapt to experimental conditions.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An automated determination of Laguerre-Gaussian (LG) modes benefits cavity tuning and optical communication. In this paper, we employ machine learning techniques to automatically detect the lowest sixteen LG modes of a laser beam. Convolutional neural networks (CNN) are trained by collecting the experimental and simulated datasets of LG modes that relies only on the intensity images of their unique patterns. We demonstrate that the trained CNN model can detect LG modes with the maximum accuracy greater than 96% after 60 epochs. The study evaluates the CNN's ability to generalize to new data and adapt to experimental conditions.
利用卷积神经网络识别拉盖尔-高斯模式
自动确定拉盖尔-高斯(LG)模式有利于腔调谐和光通信。在本文中,我们采用机器学习技术来自动检测激光束的最低16个LG模式。卷积神经网络(CNN)通过收集LG模式的实验和模拟数据集来训练,这些数据集仅依赖于其独特模式的强度图像。结果表明,经过60次epoch后,训练后的CNN模型可以检测LG模式,最大准确率大于96%。该研究评估了CNN泛化新数据和适应实验条件的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信