On Convex Stochastic Variance Reduced Gradient for Adversarial Machine Learning

Saikiran Bulusu, Qunwei Li, P. Varshney
{"title":"On Convex Stochastic Variance Reduced Gradient for Adversarial Machine Learning","authors":"Saikiran Bulusu, Qunwei Li, P. Varshney","doi":"10.1109/GlobalSIP45357.2019.8969103","DOIUrl":null,"url":null,"abstract":"We study the finite-sum problem in an adversarial setting using stochastic variance reduced gradient (SVRG) optimization in a distributed setting. Here, a fraction of the workers are assumed to be Byzantine that exhibit adversarial behavior by providing arbitrary data. We propose a robust scheme to combat the actions of Byzantine adversaries in this setting, and provide rates of convergence for the convex case. This is the first study of SVRG in an adversarial setting.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the finite-sum problem in an adversarial setting using stochastic variance reduced gradient (SVRG) optimization in a distributed setting. Here, a fraction of the workers are assumed to be Byzantine that exhibit adversarial behavior by providing arbitrary data. We propose a robust scheme to combat the actions of Byzantine adversaries in this setting, and provide rates of convergence for the convex case. This is the first study of SVRG in an adversarial setting.
对抗性机器学习的凸随机方差降阶
在分布式环境下,利用随机方差减少梯度(SVRG)优化方法研究了对抗环境下的有限和问题。在这里,一小部分工作人员被认为是拜占庭人,他们通过提供任意数据而表现出敌对行为。在这种情况下,我们提出了一个鲁棒的方案来对抗拜占庭对手的行动,并提供了凸情况下的收敛率。这是第一次在对抗环境下对SVRG进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信