FTS Observation of CO Fundamental Bands in Cool Stellar Atmospheres

G. Wiedemann, T. Ayres, D. Jennings
{"title":"FTS Observation of CO Fundamental Bands in Cool Stellar Atmospheres","authors":"G. Wiedemann, T. Ayres, D. Jennings","doi":"10.1364/hrfts.1989.mb4","DOIUrl":null,"url":null,"abstract":"The infrared ro-vibration spectrum of carbon monoxide provides a powerful observational diagnostic for the investigation of late-type stellar atmospheres. At temperatures of several thousands of degrees, CO vibrational states up to v=7 and rotational states up to j≈100 are populated. The corresponding lines are formed over, and therefore probe, a large range in altitude. The strongest fundamental lines (Δv=1) originate in the upper photosphere and in the chromosphere, regions which are only inadequately described by present stellar atmosphere theories. Numerical simulations have shown that CO affects the stellar atmospheric structure through cooling in optically thin lines (e.g. Johnson, 1973). CO observations are important, because the model predictions can be tested reliably only from observations of species that are intimately involved. This is particularly true in view of the dilemma posed by the contradicting results of 'conventional' chromospheric diagnostics and first CO Δv=1 observations on the Sun (Ayres and Testerman, 1981) and Arcturus (Heasley et al., 1978). The present study has been conducted to establish CO fundamental bands as an observational diagnostic for the higher layers of cool stellar atmospheres.","PeriodicalId":159025,"journal":{"name":"High Resolution Fourier Transform Spectroscopy","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Resolution Fourier Transform Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/hrfts.1989.mb4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The infrared ro-vibration spectrum of carbon monoxide provides a powerful observational diagnostic for the investigation of late-type stellar atmospheres. At temperatures of several thousands of degrees, CO vibrational states up to v=7 and rotational states up to j≈100 are populated. The corresponding lines are formed over, and therefore probe, a large range in altitude. The strongest fundamental lines (Δv=1) originate in the upper photosphere and in the chromosphere, regions which are only inadequately described by present stellar atmosphere theories. Numerical simulations have shown that CO affects the stellar atmospheric structure through cooling in optically thin lines (e.g. Johnson, 1973). CO observations are important, because the model predictions can be tested reliably only from observations of species that are intimately involved. This is particularly true in view of the dilemma posed by the contradicting results of 'conventional' chromospheric diagnostics and first CO Δv=1 observations on the Sun (Ayres and Testerman, 1981) and Arcturus (Heasley et al., 1978). The present study has been conducted to establish CO fundamental bands as an observational diagnostic for the higher layers of cool stellar atmospheres.
低温恒星大气中CO基波段的FTS观测
一氧化碳的红外无振动谱为研究晚期恒星大气提供了有力的观测诊断。在几千度的温度下,CO的振动态高达v=7,旋转态高达j≈100。相应的线是在一个很大的高度范围内形成的,因此可以探测到。最强的基本线(Δv=1)起源于上层光球层和色球层,这是目前恒星大气理论所不能充分描述的区域。数值模拟表明,CO通过光学细线的冷却作用影响恒星大气结构(例如Johnson, 1973)。CO观测很重要,因为只有通过对密切相关的物种的观测才能可靠地检验模式预测。考虑到“传统”色球诊断和对太阳(Ayres and Testerman, 1981)和大角星(Heasley et al., 1978) CO Δv=1观测的矛盾结果所造成的困境,这一点尤其正确。本研究的目的是建立CO基本波段,作为低温恒星大气高层的观测诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信