Multiple Regression Design for a Full Factorial Base Model Associated with a Commutative Jordan Algebra

Sandra Oliveira, E. Moreira, M. Fonseca, J. Mexia
{"title":"Multiple Regression Design for a Full Factorial Base Model Associated with a Commutative Jordan Algebra","authors":"Sandra Oliveira, E. Moreira, M. Fonseca, J. Mexia","doi":"10.1145/3274250.3274255","DOIUrl":null,"url":null,"abstract":"If for each treatment of a base model we consider a multiple linear regression on the same variables (dependent and independent) a multiple regression design (MRD) is obtained. If the number of observations per regression is equal, the MRD is balanced, otherwise it is unbalanced. The purpose of this work is to show that is possible to extend the study of the full factorial design of fixed effects and the MRD associated to these designs to the unbalanced cases, combining the linear model associated with a commutative Jordan algebra (CJA) and the L-Model theory. The structure of the factorial design used in this work is based on linear spaces on Galois fields as well as on the relationship between a linear model and a CJA.","PeriodicalId":410500,"journal":{"name":"Proceedings of the 2018 1st International Conference on Mathematics and Statistics","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 1st International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274250.3274255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If for each treatment of a base model we consider a multiple linear regression on the same variables (dependent and independent) a multiple regression design (MRD) is obtained. If the number of observations per regression is equal, the MRD is balanced, otherwise it is unbalanced. The purpose of this work is to show that is possible to extend the study of the full factorial design of fixed effects and the MRD associated to these designs to the unbalanced cases, combining the linear model associated with a commutative Jordan algebra (CJA) and the L-Model theory. The structure of the factorial design used in this work is based on linear spaces on Galois fields as well as on the relationship between a linear model and a CJA.
与交换约当代数相关的全阶乘基模型的多元回归设计
如果对于基本模型的每个处理,我们考虑对相同变量(相关和独立)进行多元线性回归,则获得多元回归设计(MRD)。如果每次回归的观测数相等,则MRD是平衡的,否则是不平衡的。这项工作的目的是表明,有可能将固定效应的全因子设计和与这些设计相关的MRD的研究扩展到不平衡情况,结合与交换约当代数(CJA)相关的线性模型和l -模型理论。本研究中使用的析因设计结构基于伽罗瓦场的线性空间以及线性模型和CJA之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信