Eigenvalue of Intuitionistic Fuzzy Matrices Over Distributive Lattice

A. Ebrahimnejad, A. K. Adak, E. Jamkhaneh
{"title":"Eigenvalue of Intuitionistic Fuzzy Matrices Over Distributive Lattice","authors":"A. Ebrahimnejad, A. K. Adak, E. Jamkhaneh","doi":"10.4018/IJFSA.2019010101","DOIUrl":null,"url":null,"abstract":"In this article, the concepts of intuitionistic fuzzy complete and complete distributive lattice are introduced and the relative pseudocomplement relation of intuitionistic fuzzy sets is defined. The concepts of intuitionistic fuzzy eigenvalue and eigenvector of an intuitionistic fuzzy matrixes are presented and proved that the set of intuitionistic fuzzy eigenvectors of a given intuitionistic fuzzy eigenvalue form an intuitionistic fuzzy subspace. Also, the authors obtain an intuitionistic fuzzy maximum matrix of a given intuitionistic fuzzy eigenvalue and eigenvector and give some properties of an intuitionistic fuzzy maximum matrix. Finally, the invariant of an intuitionistic fuzzy matrix over a distributive lattice is given with some properties.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJFSA.2019010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, the concepts of intuitionistic fuzzy complete and complete distributive lattice are introduced and the relative pseudocomplement relation of intuitionistic fuzzy sets is defined. The concepts of intuitionistic fuzzy eigenvalue and eigenvector of an intuitionistic fuzzy matrixes are presented and proved that the set of intuitionistic fuzzy eigenvectors of a given intuitionistic fuzzy eigenvalue form an intuitionistic fuzzy subspace. Also, the authors obtain an intuitionistic fuzzy maximum matrix of a given intuitionistic fuzzy eigenvalue and eigenvector and give some properties of an intuitionistic fuzzy maximum matrix. Finally, the invariant of an intuitionistic fuzzy matrix over a distributive lattice is given with some properties.
分配格上直觉模糊矩阵的特征值
引入了直觉模糊完备和完全分布格的概念,定义了直觉模糊集的相对伪补关系。给出了直觉模糊矩阵的直觉模糊特征值和直觉模糊特征向量的概念,并证明了给定直觉模糊特征值的直觉模糊特征向量的集合构成直觉模糊子空间。得到了给定直觉模糊特征值和特征向量的直觉模糊极大矩阵,并给出了直觉模糊极大矩阵的一些性质。最后,给出了分配格上直觉模糊矩阵的不变量,并给出了一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信