Minimum Stretch Spanning Tree Problem in Operations on Trees

Toru Araki, Eito Hasegawa, Shion Kato
{"title":"Minimum Stretch Spanning Tree Problem in Operations on Trees","authors":"Toru Araki, Eito Hasegawa, Shion Kato","doi":"10.1142/s0219265921500286","DOIUrl":null,"url":null,"abstract":"The minimum stretch spanning tree problem for a connected graph [Formula: see text] is to find a spanning tree [Formula: see text] of [Formula: see text] such that the maximum distance in [Formula: see text] between two adjacent vertices of [Formula: see text] is minimized, where the minimum value is called the tree-stretch of [Formula: see text]. This paper presents the tree-stretch of a graph constructed by the Cartesian product of two trees. This result is a generalization of the result for the grid graphs obtained by Lin and Lin (L. Lin, Y. Lin, The minimum stretch spanning tree problem for typical graphs, Acta Mathematicae Applicatae Sinica, English Series, 37(3) (2021) 510–522). Then, we give the tree-stretch of the [Formula: see text]-th power of a tree.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921500286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum stretch spanning tree problem for a connected graph [Formula: see text] is to find a spanning tree [Formula: see text] of [Formula: see text] such that the maximum distance in [Formula: see text] between two adjacent vertices of [Formula: see text] is minimized, where the minimum value is called the tree-stretch of [Formula: see text]. This paper presents the tree-stretch of a graph constructed by the Cartesian product of two trees. This result is a generalization of the result for the grid graphs obtained by Lin and Lin (L. Lin, Y. Lin, The minimum stretch spanning tree problem for typical graphs, Acta Mathematicae Applicatae Sinica, English Series, 37(3) (2021) 510–522). Then, we give the tree-stretch of the [Formula: see text]-th power of a tree.
树运算中的最小伸缩生成树问题
连通图[公式:见文]的最小伸缩生成树问题是寻找[公式:见文]的一棵生成树[公式:见文],使[公式:见文]的两个相邻顶点在[公式:见文]中的最大距离最小化,其中的最小值称为[公式:见文]的树伸缩。本文给出了由两树的笛卡尔积构造的图的树形拉伸。这个结果是Lin和Lin得到的网格图结果的推广(L. Lin, Y. Lin,典型图的最小拉伸生成树问题,应用数学学报,英文系列,37(3)(2021)510-522)。然后,我们给出[公式:见文本]的树-树的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信