History Utterance Embedding Transformer LM for Speech Recognition

Keqi Deng, Gaofeng Cheng, Haoran Miao, Pengyuan Zhang, Yonghong Yan
{"title":"History Utterance Embedding Transformer LM for Speech Recognition","authors":"Keqi Deng, Gaofeng Cheng, Haoran Miao, Pengyuan Zhang, Yonghong Yan","doi":"10.1109/ICASSP39728.2021.9414575","DOIUrl":null,"url":null,"abstract":"History utterances contain rich contextual information; however, better extracting information from the history utterances and using it to improve the language model (LM) is still challenging. In this paper, we propose the history utterance embedding Transformer LM (HTLM), which includes an embedding generation network for extracting contextual information contained in the history utterances and a main Transformer LM for current prediction. In addition, the two-stage attention (TSA) is proposed to encode richer contextual information into the embedding of history utterances (h-emb) while supporting GPU parallel training. Furthermore, we combine the extracted h-emb and embedding of current utterance (c-emb) through the dot-product attention and a fusion method for HTLM's current prediction. Experiments are conducted on the HKUST dataset and achieve a 23.4% character error rate (CER) on the test set. Compared with the baseline, the proposed method yields 12.86 absolute perplexity reduction and 0.8% absolute CER reduction.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

History utterances contain rich contextual information; however, better extracting information from the history utterances and using it to improve the language model (LM) is still challenging. In this paper, we propose the history utterance embedding Transformer LM (HTLM), which includes an embedding generation network for extracting contextual information contained in the history utterances and a main Transformer LM for current prediction. In addition, the two-stage attention (TSA) is proposed to encode richer contextual information into the embedding of history utterances (h-emb) while supporting GPU parallel training. Furthermore, we combine the extracted h-emb and embedding of current utterance (c-emb) through the dot-product attention and a fusion method for HTLM's current prediction. Experiments are conducted on the HKUST dataset and achieve a 23.4% character error rate (CER) on the test set. Compared with the baseline, the proposed method yields 12.86 absolute perplexity reduction and 0.8% absolute CER reduction.
用于语音识别的历史话语嵌入变换LM
历史话语包含着丰富的语境信息;然而,如何更好地从历史话语中提取信息并利用它来改进语言模型(LM)仍然是一个挑战。在本文中,我们提出了历史话语嵌入变形LM (HTLM),它包括一个用于提取历史话语中包含的上下文信息的嵌入生成网络和一个用于当前预测的主变形LM。此外,在支持GPU并行训练的同时,提出了两阶段注意(TSA)方法,将更丰富的上下文信息编码到历史话语(h-emb)的嵌入中。此外,我们通过点积关注和HTLM当前预测的融合方法,将提取的h-emb与当前话语的嵌入(c-emb)相结合。在香港科技大学数据集上进行实验,测试集的字符错误率为23.4%。与基线相比,该方法的绝对perplexity降低了12.86,绝对CER降低了0.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信