Motivating Agent-Based Learning for Bounding Time in Mixed-Criticality Systems

Behnaz Ranjbar, Ali Hosseinghorban, Akash Kumar
{"title":"Motivating Agent-Based Learning for Bounding Time in Mixed-Criticality Systems","authors":"Behnaz Ranjbar, Ali Hosseinghorban, Akash Kumar","doi":"10.23919/DATE56975.2023.10137189","DOIUrl":null,"url":null,"abstract":"In Mixed-Criticality (MC) systems, the high Worst-Case Execution Time (WCET) of a task is a pessimistic bound, the maximum execution time of the task under all circumstances, while the low WCET should be close to the actual execution time of most instances of the task to improve utilization and Quality-of-Service (QoS). Most MC systems consider a static low WCET for each task which cannot adapt to dynamism at run-time. In this regard, we consider the run-time behavior of tasks and motivate to propose a learning-based approach that dynamically monitors the tasks' execution times and adapts the low WCETs to determine the ideal trade-off between mode-switches, utilization, and QoS. Based on our observations on running embedded real-time benchmarks on a real platform, the proposed scheme reduces the utilization waste by 47.2%, on average, compared to state-of-the-art works.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In Mixed-Criticality (MC) systems, the high Worst-Case Execution Time (WCET) of a task is a pessimistic bound, the maximum execution time of the task under all circumstances, while the low WCET should be close to the actual execution time of most instances of the task to improve utilization and Quality-of-Service (QoS). Most MC systems consider a static low WCET for each task which cannot adapt to dynamism at run-time. In this regard, we consider the run-time behavior of tasks and motivate to propose a learning-based approach that dynamically monitors the tasks' execution times and adapts the low WCETs to determine the ideal trade-off between mode-switches, utilization, and QoS. Based on our observations on running embedded real-time benchmarks on a real platform, the proposed scheme reduces the utilization waste by 47.2%, on average, compared to state-of-the-art works.
基于激励agent的混合临界系统边界时间学习
在混合临界系统中,任务的高最坏情况执行时间(WCET)是一个悲观界限,即任务在所有情况下的最大执行时间,而低最坏情况执行时间(WCET)应接近任务大多数实例的实际执行时间,以提高利用率和服务质量(QoS)。大多数MC系统为每个任务考虑一个静态的低WCET,这不能适应运行时的动态。在这方面,我们考虑了任务的运行时行为,并提出了一种基于学习的方法,该方法动态监控任务的执行时间,并适应低wcet,以确定模式切换、利用率和QoS之间的理想权衡。根据我们在真实平台上运行嵌入式实时基准测试的观察,与最先进的方法相比,所提出的方案平均减少了47.2%的利用浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信