A framework for predicting trajectories using global and local information

William Groves, Ernesto Nunes, Maria L. Gini
{"title":"A framework for predicting trajectories using global and local information","authors":"William Groves, Ernesto Nunes, Maria L. Gini","doi":"10.1145/2597917.2597934","DOIUrl":null,"url":null,"abstract":"We propose a novel framework for predicting the paths of vehicles that move on a road network. The framework leverages global and local patterns in spatio-temporal data. From a large corpus of GPS trajectories, we predict the subsequent path of an in-progress vehicle trajectory using only spatio-temporal features from the data. Our framework consists of three components: (1) a component that abstracts GPS location data into a graph at the neighborhood or street level, (2) a component that generates policies obtained from the graph data, and (3) a component that predicts the subsequent path of an in-progress trajectory. Hierarchical clustering is used to construct the city graph, where the clusters facilitate a compact representation of the trajectory data to make processing large data sets tractable and efficient. We propose four alternative policy generation algorithms: a frequency-based algorithm (FreqCount), a correlation-based algorithm (EigenStrat), a spectral clusteringbased algorithm (LapStrat), and a Markov Chain-based algorithm (MCStrat). The algorithms explore either global patterns (FreqCount and EigenStrat) or local patterns (MCStrat) in the data, with the exception of LapStrat which explores both. We present an analysis of the performance of the alternative prediction algorithms using a large real-world taxi data set.","PeriodicalId":194910,"journal":{"name":"Proceedings of the 11th ACM Conference on Computing Frontiers","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597917.2597934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a novel framework for predicting the paths of vehicles that move on a road network. The framework leverages global and local patterns in spatio-temporal data. From a large corpus of GPS trajectories, we predict the subsequent path of an in-progress vehicle trajectory using only spatio-temporal features from the data. Our framework consists of three components: (1) a component that abstracts GPS location data into a graph at the neighborhood or street level, (2) a component that generates policies obtained from the graph data, and (3) a component that predicts the subsequent path of an in-progress trajectory. Hierarchical clustering is used to construct the city graph, where the clusters facilitate a compact representation of the trajectory data to make processing large data sets tractable and efficient. We propose four alternative policy generation algorithms: a frequency-based algorithm (FreqCount), a correlation-based algorithm (EigenStrat), a spectral clusteringbased algorithm (LapStrat), and a Markov Chain-based algorithm (MCStrat). The algorithms explore either global patterns (FreqCount and EigenStrat) or local patterns (MCStrat) in the data, with the exception of LapStrat which explores both. We present an analysis of the performance of the alternative prediction algorithms using a large real-world taxi data set.
利用全球和局部信息预测轨迹的框架
我们提出了一个新的框架来预测在道路网络上移动的车辆的路径。该框架利用了时空数据中的全局和局部模式。从大量的GPS轨迹语料库中,我们仅使用数据中的时空特征来预测正在进行的车辆轨迹的后续路径。我们的框架由三个组件组成:(1)将GPS位置数据抽象成社区或街道级别的图形的组件,(2)从图形数据中生成策略的组件,以及(3)预测正在进行的轨迹的后续路径的组件。分层聚类用于构建城市图,其中聚类促进了轨迹数据的紧凑表示,从而使处理大型数据集变得易于处理和高效。我们提出了四种可选的策略生成算法:基于频率的算法(FreqCount)、基于相关性的算法(EigenStrat)、基于频谱聚类的算法(LapStrat)和基于马尔可夫链的算法(MCStrat)。这些算法探索数据中的全局模式(FreqCount和EigenStrat)或局部模式(MCStrat),但LapStrat同时探索这两种模式。我们使用大型真实出租车数据集对替代预测算法的性能进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信