Gaze Depth Estimation for In-vehicle AR Displays

Ryusei Uramune, K. Sawamura, Sei Ikeda, H. Ishizuka, O. Oshiro
{"title":"Gaze Depth Estimation for In-vehicle AR Displays","authors":"Ryusei Uramune, K. Sawamura, Sei Ikeda, H. Ishizuka, O. Oshiro","doi":"10.1145/3582700.3583707","DOIUrl":null,"url":null,"abstract":"In our previous study, we proposed a method for judging whether the user is gazing at a semi-transparent virtual object or real objects behind it in augmented reality environments. This paper shows that the accuracy of our method can be improved by selecting the optimal thresholds for the fixation detection. Fourteen participants experienced a virtual reality environment in which there were a transparent subway map and buildings behind it in the distance of 2 m and 15 m away from each participant, respectively. As a result, the accuracy of our method has achieved 88.3 % and improved by 13.8 percentage points from the previous 74.5 %.","PeriodicalId":115371,"journal":{"name":"Proceedings of the Augmented Humans International Conference 2023","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Augmented Humans International Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582700.3583707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous study, we proposed a method for judging whether the user is gazing at a semi-transparent virtual object or real objects behind it in augmented reality environments. This paper shows that the accuracy of our method can be improved by selecting the optimal thresholds for the fixation detection. Fourteen participants experienced a virtual reality environment in which there were a transparent subway map and buildings behind it in the distance of 2 m and 15 m away from each participant, respectively. As a result, the accuracy of our method has achieved 88.3 % and improved by 13.8 percentage points from the previous 74.5 %.
车载AR显示器的凝视深度估计
在我们之前的研究中,我们提出了一种在增强现实环境中判断用户是在注视半透明的虚拟物体还是其背后的真实物体的方法。本文表明,通过选择最佳的注视检测阈值,可以提高方法的准确性。14名参与者体验了一个虚拟现实环境,在这个环境中,透明的地铁地图和其背后的建筑物分别距离每个参与者2米和15米。结果表明,该方法的准确率达到了88.3%,比之前的74.5%提高了13.8个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信