Human Detection in Thermal Imaging Using YOLO

Marina Ivasic-Kos, M. Krišto, M. Pobar
{"title":"Human Detection in Thermal Imaging Using YOLO","authors":"Marina Ivasic-Kos, M. Krišto, M. Pobar","doi":"10.1145/3323933.3324076","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of automatic detection of humans in thermal videos and images. The thermal videos are recorded on a meadow with a small forest with up to three persons present on the scene at different positions and ranges from the camera. To simulate realistic conditions that can happen during surveillance and monitoring of protected areas, all videos are recorded at night but different weather conditions--clear weather, rain, and fog. We present the results of human detection on a custom dataset of thermal videos using the out-of-the-box YOLO convolutional neural network and the YOLO network trained on a subset of our dataset. YOLO is an object detector pretrained on the COCO image dataset of RGB images of various object classes. Test experimental results have shown significantly improved performance of human detection in thermal imaging in terms of average precision for trained YOLO model over the original model.","PeriodicalId":137904,"journal":{"name":"Proceedings of the 2019 5th International Conference on Computer and Technology Applications","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 5th International Conference on Computer and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323933.3324076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

In this paper, we consider the problem of automatic detection of humans in thermal videos and images. The thermal videos are recorded on a meadow with a small forest with up to three persons present on the scene at different positions and ranges from the camera. To simulate realistic conditions that can happen during surveillance and monitoring of protected areas, all videos are recorded at night but different weather conditions--clear weather, rain, and fog. We present the results of human detection on a custom dataset of thermal videos using the out-of-the-box YOLO convolutional neural network and the YOLO network trained on a subset of our dataset. YOLO is an object detector pretrained on the COCO image dataset of RGB images of various object classes. Test experimental results have shown significantly improved performance of human detection in thermal imaging in terms of average precision for trained YOLO model over the original model.
基于YOLO的热成像人体检测
本文主要研究热视频和热图像中人体的自动检测问题。热成像视频是在一个有小森林的草地上录制的,现场最多有三个人在不同的位置和距离摄像机。为了模拟在监视和监测保护区期间可能发生的真实情况,所有视频都是在夜间录制的,但不同的天气条件-晴天,下雨和雾。我们使用开箱即用的YOLO卷积神经网络和在我们的数据集子集上训练的YOLO网络,在热视频的自定义数据集上展示了人类检测的结果。YOLO是一种基于COCO图像数据集预训练的对象检测器,该数据集包含各种对象类别的RGB图像。测试实验结果表明,与原始模型相比,训练后的YOLO模型在热成像中人体检测的平均精度显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信