A sensor fusion approach for localization with cumulative error elimination

Feihu Zhang, H. Stahle, Guang Chen, Chao-Wei Chen, Carsten Simon, C. Buckl, A. Knoll
{"title":"A sensor fusion approach for localization with cumulative error elimination","authors":"Feihu Zhang, H. Stahle, Guang Chen, Chao-Wei Chen, Carsten Simon, C. Buckl, A. Knoll","doi":"10.1109/MFI.2012.6343009","DOIUrl":null,"url":null,"abstract":"This paper describes a robust approach which improves the precision of vehicle localization in complex urban environments by fusing data from GPS, gyroscope and velocity sensors. In this method, we apply Kalman filter to estimate the position of the vehicle. Compared with other fusion based localization approaches, we process the data in a public coordinate system, called Earth Centred Earth Fixed (ECEF) coordinates and eliminate the cumulative error by its statistics characteristics. The contribution is that it not only provides a sensor fusion framework to estimate the position of the vehicle, but also gives a mathematical solution to eliminate the cumulative error stems from the relative pose measurements (provided by the gyroscope and velocity sensors). The experiments exhibit the reliability and the feasibility of our approach in large scale environment.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper describes a robust approach which improves the precision of vehicle localization in complex urban environments by fusing data from GPS, gyroscope and velocity sensors. In this method, we apply Kalman filter to estimate the position of the vehicle. Compared with other fusion based localization approaches, we process the data in a public coordinate system, called Earth Centred Earth Fixed (ECEF) coordinates and eliminate the cumulative error by its statistics characteristics. The contribution is that it not only provides a sensor fusion framework to estimate the position of the vehicle, but also gives a mathematical solution to eliminate the cumulative error stems from the relative pose measurements (provided by the gyroscope and velocity sensors). The experiments exhibit the reliability and the feasibility of our approach in large scale environment.
基于累积误差消除的传感器融合定位方法
本文介绍了一种融合GPS、陀螺仪和速度传感器数据,提高复杂城市环境下车辆定位精度的鲁棒方法。在该方法中,我们使用卡尔曼滤波来估计车辆的位置。与其他基于融合的定位方法相比,我们在一个称为地球中心地球固定(ECEF)坐标的公共坐标系中处理数据,并利用其统计特性消除累积误差。贡献在于它不仅提供了一个传感器融合框架来估计车辆的位置,而且还给出了一个数学解决方案来消除相对姿态测量(由陀螺仪和速度传感器提供)产生的累积误差。实验证明了该方法在大规模环境下的可靠性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信