{"title":"Intrinsic Randomness Problem with Respect to a Subclass of f-divergence","authors":"R. Nomura","doi":"10.1109/itw44776.2019.8989245","DOIUrl":null,"url":null,"abstract":"This paper deals with the intrinsic randomness (IR) problem, which is one of typical random number generation problems. In the literature, the optimum achievable rates in the IR problem with respect to the variational distance as well as the Kullback-Leibler (KL) divergence have already been analyzed. On the other hand, in this study we consider the IR problem with respect to a subclass of f-divergences. The f-divergence is a general non-negative measure between two probabilistic distributions and includes several important measures such as the total variational distance, the $\\chi^{2}-$divergence, the KL divergence, and so on. Hence, it is meaningful to consider the IR problem with respect to the f-divergence. In this paper, we assume some conditions on the f-divergence for simplifying the analysis. That is, we focus on a subclass of f-divergences. In this problem setting, we first derive the general formula of the optimum achievable rate. Next, we show that it is easy to derive the optimum achievable rate with respect to the variational distance, the KL divergence, and the Hellinger distance from our general formula.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/itw44776.2019.8989245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper deals with the intrinsic randomness (IR) problem, which is one of typical random number generation problems. In the literature, the optimum achievable rates in the IR problem with respect to the variational distance as well as the Kullback-Leibler (KL) divergence have already been analyzed. On the other hand, in this study we consider the IR problem with respect to a subclass of f-divergences. The f-divergence is a general non-negative measure between two probabilistic distributions and includes several important measures such as the total variational distance, the $\chi^{2}-$divergence, the KL divergence, and so on. Hence, it is meaningful to consider the IR problem with respect to the f-divergence. In this paper, we assume some conditions on the f-divergence for simplifying the analysis. That is, we focus on a subclass of f-divergences. In this problem setting, we first derive the general formula of the optimum achievable rate. Next, we show that it is easy to derive the optimum achievable rate with respect to the variational distance, the KL divergence, and the Hellinger distance from our general formula.